
Summary Comments References

Bai and Pukthuanthong (2020) - “Machine
Learning classification methods and portfolio

allocation: an examination of market efficiency”

Discussion by Ahmed Guecioueur

INSEAD

13 February 2021
Miami Herbert Winter Conference on ML & Business



Summary Comments References

Summary

Summary

Comments

References



Summary Comments References

Typical cross-sectional return predictability setup I

General model of firms’ next-period excess returns

ri ,t+1 = Et(ri ,t+1) + εi ,t+1 = h(xit) + εi ,t+1, (1)

• stocks are indexed as i = 1, . . . ,Nt

• months are indexed by t = 1, . . . ,T
• xit is an M-dimensional vector of publicly-available predictors,

such as firm-level characteristics or market-level variables
• Examples: Gu, Kelly, and Xiu (2020), Freyberger, Neuhierl,

and Weber (2020), Han et al. (2020), and Evgeniou,
Guecioueur, and Prieto (2020)
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Typical cross-sectional return predictability setup II

Predicting ri ,t+1 is a cross-sectional regression problem:
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Classification setup of Bai and Pukthuanthong (2020)

Bai and Pukthuanthong (2020) classify firms into deciles of
next-period returns (instead of predicting ri ,t+1 directly):
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From “return states” to portfolios I

Predicted return deciles map nicely into forming long/short
portfolios to test the economic significance of OOS predictability:
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From “return states” to portfolios II

L/S portfolios with best OOS performance

• Equal-weighted: monthly SR of 0.87 (vs. market 0.13)
• Value-weighted: monthly SR of 0.42 (vs. market 0.12)
• Compare favourably to the cross-sectional regression-based

approach of Gu, Kelly, and Xiu (2020)
• Not due to leverage or excessive concentration in microcaps

(whether defined at bottom 5% of 10% of caps)
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Other results
Compare classifier accuracies against benchmarks

• Benchmarks are outperformed, with statistical significance
• Benchmarks interpreted with respect to market efficiency

Predictability

• (Average) classification accuracy of future deciles is best for
the highest and lowest realized future deciles

Feature importance (based on Total SSE reductions)

• Firm-level idiosyncratic volatility is the most important feature
for both neural nets and tree-based models

• Bid-ask spread and return volatility are also especially
important for tree-based models
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Comment: advantages of a classification approach I
Stated advantages

1. Can easily calculate predictive accuracy
2. Can compare to benchmarks to test hypotheses
3. Can assess which stocks are more predictable than others
4. Can quantify probabilities of predictions

Other approaches

• (1)-(3) above also apply to regression approaches
• (4) applies to many probabilistic ML models

Unique advantages for classification?

• Would help to sharpen the importance
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Comment: advantages of a classification approach II

Some leads
• Can be used for applications that do not require conditional

expectations of individual firm-level returns, such as:
• L/S portfolio formation (already in the paper)
• risk management

• May be useful to characterise feature values across different
quantiles – see Barnes and Hughes (2002)

• There is a theoretical link between classification and quantile
regression – see Langford, Oliveira, and Zadrozny (2006)
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Comment: benchmarks & Monte Carlo I

Tests of market efficiency
• 2 of the “no information” benchmarks use information about

the in-sample/historical return states
• Can this be framed as testing whether firm-level information

beyond returns improves predictability? i.e. version of the
weak-form vs. semistrong-form debate

• 2 of the “no information” benchmarks use information about
the out-of-sample/future return states

• Justification for using OOS information?
• “Martingale” benchmark: prediction for future return state is

the current return state
• Differs from the classic martingale hypothesis that prices

follow a martingale and returns are unpredictable
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Comment: benchmarks & Monte Carlo II

Usage of Monte Carlo

• 3 of the “no information” benchmarks are non-deterministic
(i.e. random predictions)

• Monte Carlo samples can be used to produce an average
performance measure for these – is this the usage?

• Is Monte Carlo also applied to (any non-deterministic)
non-benchmark classifiers too?
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Comment: statistical testing & Monte Carlo I

Would benefit from some more detail
• Why & how Monte Carlo sampling is performed
• How the binomial test is applied: independent trials?

Some ways classifiers can be statistically compared

• Within a dataset: trials = samples
• Across multiple datasets: trials = datasets
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Comment: statistical testing & Monte Carlo II
Example of within-dataset binomial test, from Salzberg (1997)

• Two classifiers, A & B
• Let n be the number of samples within the dataset on which

A & B predict different classes (i.e. drop ties)
• Let s be the number of successes for A (i.e. A is correct and

B is wrong). So n− s is the number of failures for A (i.e. A is
wrong and B is correct)

• Suppose s = 35 (A correct, B wrong) out of n = 50 examples
where A & B predicted different classes. Then the probability
of this result under the null hypothesis of P(success) = 0.5 is

n=50∑
s=35

n!
s!(n − s)!(0.5)n = 0.0032
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Comment: statistical testing & Monte Carlo III
Across-dataset testing

• Examples: Japkowicz and Shah (2011, Ch. 6.6 & 6.7)
• Demšar (2006) recommends the Wilcoxon signed-rank test

Independence & across-dataset comparisons

• Binomial test (like others) assumes sample independence
• Dietterich (1998) and Nadeau and Bengio (2003) show that

the t-test (similar assumption) is not well calibrated in
situations where independence of samples does not hold

• Informally, overlapping datasets can lead to bias
• Monte Carlo samples to produce multiple datasets for

across-dataset comparison? Independence may not hold
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Comment: realized volatility I

Good OOS performance among the extreme deciles of next-period
returns, especially transitions between deciles 1↔ 10:
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Comment: realized volatility II
It seems that these higher (absolute) return states are persistent
from one month to the next:

Are high-volatility stocks the most predictable?

• The best-predictable high (absolute) return states appear to
have high persistence (as in volatility clustering)

• Idiosyncratic volatility was an important firm-level feature
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Comment: deciles (and other quantiles)

Empirical validation of deciles

• Frequency: how close is the partition to 1/10 firms per decile?
• Consistency: are mean returns in deciles non-overlapping?
• May help link classification framing to quantile regression

Performance across quantiles

• Currently, the top & bottom deciles are used to form L/S
portfolios, as OOS performance is concentrated there

• Would using quintiles/terciles improve classification
performance in intermediate quantiles?
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Conclusion
Contributions

• Bai and Pukthuanthong (2020) take a fresh look at an asset
pricing problem through the eyes of a ML classification setup

• Predict the firm-distribution of conditional returns
• This directly maps to long/short portfolio formation

• OOS performance: high L/S Sharpe Ratios & outperforms
benchmarks in classification accuracy

• Analyze predictor importance and return state predictability

Main suggestions

• Other advantages of the classification framing and the
distribution prediction

• More detail on statistical testing and benchmarks/market
efficiency hypotheses

• Links to risk management and realized volatility?
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