Summary 0000000 Comments 0000000000000 References 0000

Bai and Pukthuanthong (2020) - "Machine Learning classification methods and portfolio allocation: an examination of market efficiency"

Discussion by Ahmed Guecioueur

INSEAD

13 February 2021 Miami Herbert Winter Conference on ML & Business Summary •000000 Comments 000000000000 References 0000

Summary

Summary

Comments

References

Typical cross-sectional return predictability setup I

General model of firms' next-period excess returns

$$r_{i,t+1} = E_t(r_{i,t+1}) + \epsilon_{i,t+1} = h(x_{it}) + \epsilon_{i,t+1}, \quad (1)$$

- stocks are indexed as $i = 1, \ldots, N_t$
- months are indexed by $t = 1, \dots, T$
- x_{it} is an *M*-dimensional vector of publicly-available predictors, such as firm-level characteristics or market-level variables
- Examples: Gu, Kelly, and Xiu (2020), Freyberger, Neuhierl, and Weber (2020), Han et al. (2020), and Evgeniou, Guecioueur, and Prieto (2020)

References 0000

Typical cross-sectional return predictability setup II

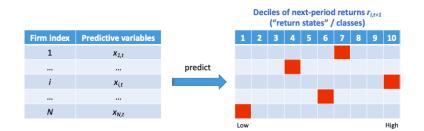
Predicting $r_{i,t+1}$ is a cross-sectional regression problem:

Firm index	Predictive variables		Next-period returns
1	<i>X</i> _{1,t}		<i>r</i> _{1,t+1}
		predict	
i	X _{i,t}		<i>r</i> _{<i>i</i>,<i>t</i>+1}
N	X _{N,t}		r _{N,t+t}

References 0000

Classification setup of Bai and Pukthuanthong (2020)

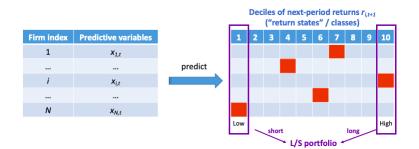
Bai and Pukthuanthong (2020) classify firms into deciles of next-period returns (instead of predicting $r_{i,t+1}$ directly):



References 0000

From "return states" to portfolios I

Predicted return deciles map nicely into forming long/short portfolios to test the economic significance of OOS predictability:



From "return states" to portfolios II

$\ensuremath{\mathsf{L}}/\ensuremath{\mathsf{S}}$ portfolios with best OOS performance

- Equal-weighted: monthly SR of 0.87 (vs. market 0.13)
- Value-weighted: monthly SR of 0.42 (vs. market 0.12)
- Compare favourably to the cross-sectional regression-based approach of Gu, Kelly, and Xiu (2020)
- Not due to leverage or excessive concentration in microcaps (whether defined at bottom 5% of 10% of caps)

Other results

Compare classifier accuracies against benchmarks

- Benchmarks are outperformed, with statistical significance
- Benchmarks interpreted with respect to market efficiency

Predictability

• (Average) classification accuracy of future deciles is best for the highest and lowest realized future deciles

Feature importance (based on Total SSE reductions)

- Firm-level idiosyncratic volatility is the most important feature for both neural nets and tree-based models
- Bid-ask spread and return volatility are also especially important for tree-based models

Summary 0000000 Comments •00000000000 References 0000

Comments

Summary

Comments

References

Comment: advantages of a classification approach I

Stated advantages

- 1. Can easily calculate predictive accuracy
- 2. Can compare to benchmarks to test hypotheses
- 3. Can assess which stocks are more predictable than others
- 4. Can quantify probabilities of predictions

Other approaches

- (1)-(3) above also apply to regression approaches
- (4) applies to many probabilistic ML models

Unique advantages for classification?

• Would help to sharpen the importance

Comment: advantages of a classification approach II

Some leads

- Can be used for applications that do not require conditional expectations of individual firm-level returns, such as:
 - L/S portfolio formation (already in the paper)
 - risk management
- May be useful to characterise feature values across different quantiles see Barnes and Hughes (2002)
- There is a theoretical link between classification and quantile regression see Langford, Oliveira, and Zadrozny (2006)

Comment: benchmarks & Monte Carlo I

Tests of market efficiency

- 2 of the "no information" benchmarks use information about the in-sample/historical return states
 - Can this be framed as testing whether firm-level information beyond returns improves predictability? i.e. version of the weak-form vs. semistrong-form debate
- 2 of the "no information" benchmarks use information about the out-of-sample/future return states
 - Justification for using OOS information?
- "Martingale" benchmark: prediction for future return state is the current return state
 - Differs from the classic martingale hypothesis that *prices* follow a martingale and *returns* are unpredictable

Comment: benchmarks & Monte Carlo II

Usage of Monte Carlo

- 3 of the "no information" benchmarks are non-deterministic (i.e. random predictions)
- Monte Carlo samples can be used to produce an average performance measure for these is this the usage?
- Is Monte Carlo also applied to (any non-deterministic) non-benchmark classifiers too?

Comment: statistical testing & Monte Carlo I

Would benefit from some more detail

- Why & how Monte Carlo sampling is performed
- How the binomial test is applied: independent trials?

Some ways classifiers can be statistically compared

- Within a dataset: trials = samples
- Across multiple datasets: trials = datasets

Comment: statistical testing & Monte Carlo II

Example of within-dataset binomial test, from Salzberg (1997)

- Two classifiers, A & B
- Let *n* be the number of samples within the dataset on which *A* & *B* predict different classes (i.e. drop ties)
- Let s be the number of successes for A (i.e. A is correct and B is wrong). So n - s is the number of failures for A (i.e. A is wrong and B is correct)
- Suppose s = 35 (A correct, B wrong) out of n = 50 examples where A & B predicted different classes. Then the probability of this result under the null hypothesis of P(success) = 0.5 is

$$\sum_{s=35}^{n=50} \frac{n!}{s!(n-s)!} (0.5)^n = 0.0032$$

Comment: statistical testing & Monte Carlo III

Across-dataset testing

- Examples: Japkowicz and Shah (2011, Ch. 6.6 & 6.7)
- Demšar (2006) recommends the Wilcoxon signed-rank test

Independence & across-dataset comparisons

- Binomial test (like others) assumes sample independence
- Dietterich (1998) and Nadeau and Bengio (2003) show that the t-test (similar assumption) is not well calibrated in situations where independence of samples does not hold
- Informally, overlapping datasets can lead to bias
- Monte Carlo samples to produce multiple datasets for across-dataset comparison? Independence may not hold

Summary 0000000 Comments 00000000000000 References 0000

Comment: realized volatility I

Good OOS performance among the extreme deciles of next-period returns, especially transitions between deciles $1 \leftrightarrow 10$:

	New 1	New 2	New 3	New 4	New 5	New 6	New 7	New 8	New 9	New 10
Old 1	0.5054	0.0228	0.0045	0.0020	0.0142	0.0446	0.0504	0.0476	0.0928	0.4449
Old 2	0.4980	0.0735	0.0122	0.0064	0.0456	0.1478	0.1309	0.1040	0.1516	0.2424
Old 3	0.4403	0.0902	0.0158	0.0125	0.0787	0.2515	0.1773	0.1052	0.1266	0.1753
Old 4	0.4098	0.0874	0.0195	0.0146	0.0995	0.3184	0.2009	0.1023	0.0993	0.1475
Old 5	0.4226	0.0832	0.0177	0.0152	0.1034	0.3350	0.2087	0.0923	0.0874	0.1404
Old 6	0.4244	0.0822	0.0200	0.0153	0.1101	0.3358	0.2028	0.0963	0.0848	0.1390
Old 7	0.4094	0.0942	0.0245	0.0159	0.1028	0.3333	0.2008	0.1025	0.0849	0.1303
Old 8	0.4376	0.1093	0.0295	0.0189	0.1016	0.3133	0.1748	0.0991	0.0876	0.1293
Old 9	0.5011	0.1472	0.0350	0.0221	0.0834	0.2463	0.1214	0.1033	0.0948	0.1270
Old 10	0.7522	0.1173	0.0257	0.0166	0.0446	0.1067	0.0586	0.0613	0.0667	0.0992

Comment: realized volatility II

It seems that these higher (absolute) return states are persistent from one month to the next:

Panel A: True Return State Transition Probability Matrix 196301:201912										
	New 1	New 2	New 3	New 4	New 5	New 6	New 7	New 8	New 9	New 10
Old 1	0.1741	0.1063	0.0816	0.0686	0.0665	0.0660	0.0719	0.0817	0.1052	0.1782
Old 2	0.1137	0.1073	0.0963	0.0891	0.0879	0.0875	0.0918	0.0993	0.1090	0.1180
Old 3	0.0859	0.0987	0.0997	0.1011	0.1007	0.1033	0.1050	0.1054	0.1059	0.0944
Old 4	0.0713	0.0899	0.1007	0.1073	0.1127	0.1134	0.1122	0.1092	0.1014	0.0817
Old 5	0.0696	0.0860	0.0992	0.1094	0.1128	0.1203	0.1167	0.1098	0.0981	0.0779
Old 6	0.0690	0.0868	0.1002	0.1084	0.1138	0.1177	0.1186	0.1116	0.0970	0.0768
Old 7	0.0675	0.0897	0.1025	0.1083	0.1134	0.1163	0.1164	0.1121	0.0980	0.0758
Old 8	0.0753	0.0973	0.1054	0.1067	0.1102	0.1123	0.1092	0.1058	0.0984	0.0794
Old 9	0.0958	0.1103	0.1061	0.1023	0.0976	0.0974	0.0971	0.1009	0.0999	0.0927
Old 10	0.1742	0.1236	0.0966	0.0825	0.0752	0.0736	0.0743	0.0802	0.0912	0.1284

Are high-volatility stocks the most predictable?

- The best-predictable high (absolute) return states appear to have high persistence (as in volatility clustering)
- Idiosyncratic volatility was an important firm-level feature

Comment: deciles (and other quantiles)

Empirical validation of deciles

- Frequency: how close is the partition to 1/10 firms per decile?
- Consistency: are mean returns in deciles non-overlapping?
- May help link classification framing to quantile regression

Performance across quantiles

- Currently, the top & bottom deciles are used to form L/S portfolios, as OOS performance is concentrated there
- Would using quintiles/terciles improve classification performance in intermediate quantiles?

Conclusion

Contributions

- Bai and Pukthuanthong (2020) take a fresh look at an asset pricing problem through the eyes of a ML classification setup
 - Predict the firm-distribution of conditional returns
 - This directly maps to long/short portfolio formation
- OOS performance: high L/S Sharpe Ratios & outperforms benchmarks in classification accuracy
- Analyze predictor importance and return state predictability

Main suggestions

- Other advantages of the classification framing and the distribution prediction
- More detail on statistical testing and benchmarks/market efficiency hypotheses
- Links to risk management and realized volatility?

Summary 0000000 Comments 000000000000 References

References

Summary

Comments

References

References

References I

- Bai, Yang, and Kuntara Pukthuanthong. 2020. "Machine Learning classification methods and portfolio allocation: an examination of market efficiency". *Available at SSRN* 3665051.
- Barnes, Michelle L, and Anthony W Hughes. 2002. *A quantile regression analysis of the cross section of stock market returns*. Tech. rep. Federal Reserve Bank of Boston.
- Chang, Woo-Jin, et al. 2021. "The higher moments of future earnings". *The Accounting Review* 96 (1): 91–116.
- Demšar, Janez. 2006. "Statistical comparisons of classifiers over multiple data sets". *Journal of Machine Learning Research* 7:1–30.
- Dietterich, Thomas G. 1998. "Approximate statistical tests for comparing supervised classification learning algorithms". *Neural Computation* 10 (7): 1895–1923.

References II

Evgeniou, Theodoros, Ahmed Guecioueur, and Rodolfo Prieto. 2020. "Uncovering sparsity and heterogeneity in firm-level return predictability using machine learning". *Available at SSRN* 3604921.

Freyberger, Joachim, Andreas Neuhierl, and Michael Weber. 2020. "Dissecting characteristics nonparametrically". *Review of Financial Studies* 33 (5): 2326–2377.

- Gu, Shihao, Bryan Kelly, and Dacheng Xiu. 2020. "Empirical asset pricing via machine learning". *Review of Financial Studies* 33 (5): 2223–2273.
- Han, Yufeng, et al. 2020. "Firm characteristics and expected stock returns". *Available at SSRN* 3185335.
- Japkowicz, Nathalie, and Mohak Shah. 2011. *Evaluating learning algorithms: a classification perspective*. Cambridge University Press.
- Langford, John, Roberto Oliveira, and Bianca Zadrozny. 2006. "Predicting conditional quantiles via reduction to classification". In *Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence*, 257–264.

References

References III

Nadeau, Claude, and Yoshua Bengio. 2003. "Inference for the generalization error". *Machine Learning* 52 (3): 239–281.

Salzberg, Steven L. 1997. "On comparing classifiers: Pitfalls to avoid and a recommended approach". *Data Mining and Knowledge Discovery* 1 (3): 317–328.