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A Characteristics

Tables IA.1 and IA.2 detail the market-level and firm-level (respectively) predictive variables
used in this study. Refer to Welch and Goyal (2007) and Green et al. (2017) (respectively) for
further details on each.

Table IA.1: Market-level variables. Full list of market-level variables used in our study. All
are at a monthly frequency. Refer to Welch and Goyal (2007) for further details.

Code Name Type Description
bm_mkt Book-to-Market ratio Ratio of book value to market value for the Dow

Jones Industrial Average
dfy_mkt Default Spread Yield rate Difference between BAA and AAA-rated corporate

bond yields
dp_mkt Dividend-Price Ratio ratio Difference between log dividends (12-month mov-

ing sum) and log prices for the S&P500
ep_mkt Earnings-Price Ratio ratio Difference between log earnings (12-month mov-

ing sum) and log prices for the S&P500
ntis_mkt Net Equity Expansion ratio 12-month moving sums of net issues/end-of-year

market cap for NYSE stocks
svar_mkt Stock Variance rate Sum of squared daily returns for the S&P 500
tbl_mkt Treasury bill rate rate 3-month US Treasury bill rates
tms_mkt Term Spread rate Difference between the long-term yield on govern-

ment bonds and the Treasury bill
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Table IA.2: Firm-level characteristics. Full list of firm-level characteristics used in our study. Refer to Green et al. (2017) for
further details.

Code Name Frequency Type Description
absacc Absolute Value of Ac-

cruals, scaled by AT
Yearly ratio Absolute Value of Working Capital Accruals, scaled by AT

acc Accruals, scaled by AT Yearly ratio Working Capital Accruals, scaled by AT
aeavol Abnormal volume

around earnings an-
nouncement

Quarterly ratio Average volume 3 days around earnings announcement
relative to 10-30 day window before announcement,
scaled by monthly volume

age Years of Coverage Yearly number of
years

Years since First Compustat Coverage

agr % change in assets Yearly percentage Annual percentage change in assets (at)
baspread Bid-ask spread Monthly ratio Monthly average of (daily bid-ask spread divided by av-

erage of daily spread)
beta Market Beta Monthly coefficient Market beta based on 36 months of weekly returns
betasq Market Beta Squared Monthly coefficient Market beta squared based on 36 months of weekly re-

turns
bm book-to-market Yearly ratio Book value of equity (ceq) divided by end of fiscal-year

market capitalization
bm_ia SIC2-adj. book-to-

market
Yearly ratio (ad-

justed)
Industry-Adjusted Book value of equity (ceq) divided by
end of fiscal-year market capitalization

cash Cash Holdings Quarterly ratio Cash and cash equivalents divided by average total assets
cashdebt Cash flow to debt Yearly ratio Earnings before depreciation and extra items over avg.

liabilities
cashpr Cash Productivity Yearly ratio Fiscal year-end market cap plus long term debt minus

total assets divided by cash and equiv assets
cfp Cash Flow to Price Ratio Yearly ratio Operating cash flows/fiscal-year-end market capitaliza-

tion
cfp_ia SIC2-adj. Cash Flow to

Price Ratio
Yearly ratio SIC2-adj. operating cash flows/fiscal-year-end market

capitalization
chatoia SIC2-adj. change in as-

set turnover
Yearly change in

ratio
The 2-digit SIC fiscal-year mean adjusted change in sales
divided by average total assets
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Code Name Frequency Type Description
chcsho % change in shares out-

standing
Yearly percentage Annual percentage change in shares outstanding (csho)

chempia SIC2-adj. % change in
employees

Yearly percentage Industry adjusted annual percent change in employees
(hire)

chfeps Change in Forecasted
(mean) EPS

Monthly change 1-month change in forecasted mean EPS

chinv Change in Inventory Yearly ratio Change in inventory scaled by average total assets
chmom Change in 6-month-

momentum
Monthly percent Cumulative returns from months t-6 to t-1 minus months

t-12 to t-7
chnanalyst Change in Number of

Analysts
Monthly change 3-month change in number of analysts

chpmia SIC2-adj. change in
profit margin

Yearly (change in)
ratio

Industry-adjusted annual change in profit margin

chtx Change in 4-quarter tax
expense

Quarterly ratio Change in total taxes from quarter t-4, scaled by total
assets (t-4)

cinvest Corporate Investment Quarterly ratio Change in net PP&E over sales net of mean of this over
prior 3 quarters

convind Convertible Debt Indi-
cator

Yearly dummy Indicator for whether company has convertible debt obli-
gations

currat Current Ratio Yearly ratio Current assets/current liabilities
depr Depreciation/PP&E Yearly ratio Depreciation/PP&E
disp Dispersion in Forecasts Monthly Ratio Standard deviation of analysts’ forecasts over mean fore-

cast
divi Dividend Initiation Yearly dummy 1 if company pays dividends but did not in prior year
divo Dividend Omission Yearly dummy 1 if company does not pay dividend but did in prior year
dolvol Dollar trading volume

in month t-2
Monthly dollar value 2-month lag of volume times price

dy Dividends to Price Yearly ratio Total dividends (dvt) divided by market capitalization at
fiscal year-end

ear Sum daily returns 3
days around earnings
announcement

Quarterly sum Sum of daily returns in three days around earnings an-
nouncement
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Code Name Frequency Type Description
egr % Change in common

shareholder equity
Yearly percentage Annual percent change in book value of equity (ceq)

ep Earnings to Price Yearly ratio Annual income before extraordinary items (ib) divided
by end of fiscal year market cap

fgr5yr Forecasted 5-year
growth

Monthly percentage Most recently available analyst forecasted 5-year growth

gma Gross profitability Yearly ratio Revenues (revt) minus cost of goods sold (cogs) divided
by lagged total assets (at)

grcapx 2-year growth of Cap.
Expenditures

Yearly percentage Percent change in capital expenditures from year t-2 to
year t

grltnoa Growth in Long-Term
Net Operating Assets

Yearly ratio Growth in Long-Term Net Operating Assets

herf Herfindahl index Yearly percentage 2-digit SIC - fiscal-year sales concentration (sum of
squared percent of sales in industry for each company)

hire % change in employees Yearly percentage Industry-adjusted annual percent change in employees
(hire)

idiovol Idiosyncratic return
volatility

Monthly regression
estimate

Standard deviation of residuals from regressions of
weekly returns on equal weighted market returns for 3
years

ill Illiquidity Monthly ratio Monthly average of daily (absolute return / dollar vol-
ume)

indmom 12-month-momentum
industry average

Monthly percent 12-month-momentum by industry

invest Capital Expenditures &
Inventory

Yearly ratio Annual change in PPEGT + annual change in inventories
scaled by lagged total assets

ipo IPO indicator Monthly dummy Dummy if it’s the first year PERMNO is available on CRSP
monthly stock file

lev Leverage Yearly ratio Total liabilities (lt) divided by fiscal year-endmarket cap-
italization

lgr % Change in long-term
debt

Yearly percentage Annual percent change in total liabilities (lt)

maxret Maximum Daily Return Monthly Return Maximum daily return from month t-1
mom12m 12-month-momentum Monthly percent 12-month-momentum
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Code Name Frequency Type Description
mom1m 1-month-momentum Monthly percent 1-month-momentum
mom36m 36-month-momentum Monthly percent Cumulative returns from months t -36 to t - 13
mom6m 6-month-momentum Monthly percent 6-month-momentum
ms Financial Statement

(Moharan) Score
Yearly score out of

8
Sum of 8 indicator variables (quarterly and annual)

mve Market capitalization Monthly dollar value Natural log of market capitalization at end of month t-1
mve_ia SIC2-adj. firm size Yearly dollar value 2-digit SIC industry-adjusted fiscal year-end market cap-

italization
nanalyst Analyst Count Monthly integer Most recently available number of analysts following

stock
nincr Number of earnings in-

creases in most recent 8
quarters

Quarterly numeric Number of consecutive quarters (up to eight quarters)
with an increase in earnings (ibq)

operprof Operating Profitability Yearly ratio Revenue - cost goods sold - SG&A expense - interest ex-
pense over lagged common equity

orgcap Organizational Capital Yearly ratio Capitalized SG&A expenses (annual)
pchcapx_ia SIC2-adj. % change in

capital expenditures
Yearly percentage The 2-digit SIC fiscal-year mean adjusted change in cap-

ital expenditures
pchcurrat % Change in Current

Ratio
Yearly percentage % change in current assets/current liabilities

pchdepr % Change in Deprecia-
tion

Yearly percentage % change in depreciation

pchgm_pchsale % change gross margin
- % change sales

Yearly percentage % change in gross margin minus percent change in sales

pchquick % change in Quick Ra-
tio

Yearly percentage % change in (current assets - inventory) / current liabil-
ities

pchsale_pchinvt % Ch.Sales - %
Ch.Inventory

Yearly percentage % change in sales - % Change in inventory

pchsale_pchrect %change sales -
%change receivables

Yearly percentage Annual percent change in sales minus annual percent
change in receivables

pchsale_pchxsga % Ch.Sales - %
Ch.SG&A

Yearly percentage % change in sales - % Change in SG&A
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Code Name Frequency Type Description
pchsaleinv % Change in Sales-to-

Inventory
Yearly percentage % change in (sales/inventory)

pctacc Percent Accruals, scaled
by IB

Yearly ratio Working capital accruals, scaled by IB

pricedelay Price Delay Monthly ratio Proportion of variation in weekly returns for 36 months
ending in month t explained by 4 lags of weekly market
returns (Rsquared)

ps Financial-statements
score

Yearly score Financial-statements score: sum of 9 indicator variables
to form fundamental health score

quick Quick Ratio Yearly ratio (current assets - inventory) / current liabilities
rd R&D increase Yearly dummy Positive R&D growth relative to total assets > 5%
rd_mve R&D to market cap Yearly ratio R&D expense divided by end-of-fiscal-year market capi-

talization
rd_sale R&D to sales Yearly ratio R&D expense divided by sale
retvol return volatility in

month t-1
Monthly Volatility of daily returns in month t-1

roaq Return on Asset Quarterly ratio Income (before extr. items) over 1-quarter lagged total
assets

roavol 16-Quarter Earnings
Volatility

Quarterly s.d. Standard deviation for 16 quarters of income (before extr.
items) over lag total assets

roeq Return on Equity Quarterly ratio Earnings before extraordinary items divided by lagged
common shareholders equity

roic Return on Invested Cap-
ital

Yearly ratio Return on Invested Capital

rsup Revenue Surprise Quarterly ratio 4-quarter change in sales divided by fiscal-year-end mar-
ket cap

salecash Sales-to-cash Yearly ratio Annual sales divided by cash and cash equivalents
saleinv Sales-to-inventory Yearly ratio Annual sales divided by total inventory
salerec Sales-to-receivables Yearly ratio Annual sales divided by accounts receivable
secured Secured Debt Yearly ratio Total liability over secured debt
securedind Secured Debt Indicator Yearly dummy Indicator for whether company has secured debt obliga-

tions

7



Code Name Frequency Type Description
sfe Analyst mean an-

nual earnings forecast
(scaled)

Quarterly ratio Analyst mean annual earnings forecast scaled by absolute
price per share at fiscal quarter end

sgr % growth of sales Yearly percentage Annual percent change in sales
sin Sin Stocks Yearly dummy Company’s primary industry is smoke or tobacco, beer or

alcohol, or gaming
sp Sales to Price Yearly ratio Annual revenue (sale) divided by fiscal year-end market

capitalization
std_dolvol Volatility of dollar trad-

ing volume
Monthly s.d. Monthly standard deviation of daily dollar trading vol-

ume
std_turn Volatility of share

turnover
Monthly s.d. Monthly standard deviation of daily share turnover

stdacc Accrual Volatility Quarterly s.d. Standard deviation for 16 quarters of accruals
stdcf Cashflow Volatility Quarterly s.d. Standard deviation for 16 quarters of income (before extr.

items) over lag total assets
sue Unexpected Quarterly

Earnings
Quarterly ratio Unexpected quarterly earnings (actual-medest I/B/E/S

earnings) divided by fiscal-quarter end market cap
tang Debt capacity/firm tan-

gibility
Yearly ratio Debt capacity/firm tangibility

tb SIC2-adj. Tax Income to
Book Income

Yearly ratio (Tax Expense/Federal taxrate)/(income before extraor-
dinary items)

turn Share Turnover Monthly ratio Avg 3-month trading volume/sharesout
zerotrade Zero Trading Days Monthly ratio Turnover weighted number of zero trading days for most

recent month
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B Details on cluster formation

This appendix provides some further details on cluster formation, beginning with the k-means
algorithm itself.

B.1 k-means algorithm

Algorithm 1 presents a basic alternating optimization procedure to perform k-means clustering.1
Firm i data is denoted by vector x i, the scalar γi denotes its assignment to a cluster and
the vector µk denotes the center of a cluster. The intuition behind k-means clustering (and
Algorithm 1) is as follows: initialize a fixed number of clusters K at coordinates µ1, . . . ,µK . Then
update the cluster locations µ1, . . . ,µK to minimize the sum of within-cluster variances (the
objective). Repeat these interlocking steps until the clusters no longer change: the resulting
partition is the one for which within-cluster variances are smallest; i.e. within-cluster firm
dissimilarities (based on observable characteristics) are minimized.

Algorithm 1 Pseudocode for the k-means clustering algorithm
1: Initialise K clusters
2: repeat
3: (Re)assign each observation to the closest (in squared Euclidean distance) cluster mean:

γi = arg mink ||x i −µk||2
4: Update the means of the currently assigned clusters: µk =

1
Nk

∑

i:γi=k x i

5: until convergence

B.2 Firm distributions across clusters

As a first indication of how the inferred clusters of firms vary from one slice to another, Table
IA.3 tabulates the proportions of firms that belong to each cluster. Only the 4th cluster (that
appears in the final slice) appears concentrated on a small subset of firms.

Figure 1 in the paper indicates that clusters are stable in principal component space. We
now supplement this visual evidence on cluster stability by counting the fraction of firms that
remain in the same cluster from slice to slice, with results shown in Table IA.4. We find that
firms’ cluster memberships are highly stable once firms enter the two largest clusters (1 & 2).
The third, smaller cluster shows more variation as a number of firms in our sample leave this

1Algorithm 1 is based upon the canonical implementation of MacQueen et al. (1967). More efficient imple-
mentations are also available – in fact, we use a variant due to Hartigan and Wong (1979) – but the intuition is
identical. Algorithm 1 has also been modified for other applications, see Patton and Weller (2022).
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cluster to join others. This can occur as they age or improve in profitability; nevertheless, the
84% level of persistence observed for this third cluster is also high.

Table IA.3: Cluster counts. Firms (%) per cluster, for each slice.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Slice 1 38.79 53.56 7.64
Slice 2 36.58 55.36 8.06
Slice 3 35.09 53.21 11.70
Slice 4 33.22 51.60 15.18
Slice 5 31.81 51.00 17.18
Slice 6 31.08 47.88 19.94 1.09

Table IA.4: Firm-cluster stability. Cells denote the fraction of firms (%) remaining in the
same cluster from one slice to the next.

Cluster Slice 1 to 2 Slice 2 to 3 Slice 3 to 4 Slice 4 to 5 Slice 5 to 6 Unconditional
1 97.66 99.39 98.98 99.20 98.12 98.66
2 100.00 99.94 100.00 99.93 96.45 99.31
3 40.51 89.41 88.89 82.96 99.61 84.16

B.3 Cluster vs. industry membership

Recall that a firm may belong to exactly one cluster and exactly one industry, for any given slice
of data. Tables IA.5 and IA.6 characterize firms’ joint membership of industries and clusters. It
is clear from the joint memberships that clusters do not span industries.

We now reinforce this point by considering individual characteristics one at a time (rather
than cluster membership as a summary) and relating these to a firm’s industry membership.
To do so, we compute industry means of firm-level characteristics on the training set of the
largest slice (i.e. slice 6, in order to facilitate a comparison with the cluster formation process),
and then take the standard deviation of each across all industries. Because all characteristics
are already scaled cross-sectionally to the same range of [−1,+1] per month, as we describe
in the paper, the across-industry standard deviations will be in the same units, thus allowing
us to concisely summarize which characteristics vary the most across industries. We sort
characteristics from greatest across-industry variation to least, and list the 20 highest-variation
characteristics in Table IA.7.

It is instructive to compare characteristics’ variation across industries, in Table IA.7, with
characteristics’ variation across clusters, which we plot in Figure 2 of the paper. There are
some similarities in which characteristics vary the most across industries and clusters, but
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also important differences, which is consistent with our previously discussed findings that
cluster and industry memberships are distinct (according to Tables IA.5 and IA.6). Interpreting
Table IA.7, the age characteristic exhibits substantial variation across industries, but firm size
(mve) varies even more. This is a major difference to cluster formation, for which firm size
is not one of the characteristics that best explains cluster differences. On a related note, IPO
status, which is another age-related indicator, does not even appear in the top 20 highest
variation characteristics across industries. Similarly, a number of variables related to analyst
forecasts (sfe, sue), sales growth (pchsale_pchinvt) and other accounting/fundamental variables
(acc, operprof, roeq, for example) also do not make the top 20 most variable characteristics
across industries, but do appear in the list of distinctive cluster-specific characteristics, as
detailed in Figure 2 in the paper. Conversely, a number of industry-specific characteristics (herf,
indmom), fundamental characteristics (tang, ps) and price-based characteristics (baspread,
beta) do appear in Table IA.7, but are not characteristics that explain cluster differences well.
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Table IA.5: Cluster vs. industry counts. Fraction (%) of firms in a given cluster that belong to a given industry.

Slice Cluster agriculture construction finance manuf-
acturing mining noclassif retail services transport

& utilities wholesale

1 1 0.31 1.25 8.68 56.68 5.24 0.23 6.96 11.96 5.08 3.60
1 2 0.17 0.96 5.95 42.64 2.94 0.06 7.53 29.39 6.80 3.57
1 3 0.79 1.19 12.70 32.14 3.57 0.00 10.71 24.60 11.90 2.38
2 1 0.33 1.32 8.61 57.62 5.05 0.25 6.71 11.42 5.05 3.64
2 2 0.22 1.04 6.24 42.78 2.79 0.05 7.88 28.50 7.11 3.39
2 3 0.00 1.13 12.03 39.47 4.89 0.00 7.89 21.43 10.15 3.01
3 1 0.35 1.40 8.81 57.42 5.06 0.26 6.37 11.61 5.06 3.66
3 2 0.23 1.15 6.62 43.50 2.82 0.06 7.94 27.50 6.90 3.28
3 3 0.00 1.05 10.47 40.31 6.02 0.00 7.85 20.68 10.73 2.88
4 1 0.37 1.49 8.86 57.37 5.13 0.28 6.34 11.29 5.13 3.73
4 2 0.24 1.14 7.15 44.02 2.88 0.06 7.99 26.67 6.67 3.18
4 3 0.00 1.22 9.80 42.65 6.53 0.20 6.94 19.80 9.80 3.06
5 1 0.40 1.60 8.72 57.41 5.31 0.30 6.31 11.12 5.01 3.81
5 2 0.19 1.12 7.75 45.12 3.12 0.06 7.62 25.31 6.56 3.12
5 3 0.00 1.11 8.72 42.86 6.31 0.19 6.31 21.71 10.02 2.78
6 1 0.43 1.60 8.40 57.13 5.53 0.32 6.38 11.06 5.32 3.83
6 2 0.21 1.24 8.01 45.86 3.18 0.07 7.80 24.38 6.35 2.90
6 3 0.00 1.33 8.29 43.12 6.80 0.00 5.80 21.89 10.12 2.65
6 4 0.00 0.00 0.00 42.42 0.00 0.00 0.00 57.58 0.00 0.00

Note: Rows add up to 100%. All firms in our sample are represented.
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Table IA.6: Industry vs. cluster counts. Fraction (%) of firms in a given industry that belong to a given cluster.

Slice Cluster agriculture construction finance manuf-
acturing mining noclassif retail services transport

& utilities wholesale

1 1 44.44 44.44 44.76 46.50 52.34 75.00 35.74 20.84 30.23 40.00
1 2 33.33 47.22 42.34 48.30 40.62 25.00 53.41 70.71 55.81 54.78
1 3 22.22 8.33 12.90 5.20 7.03 0.00 10.84 8.45 13.95 5.22
2 1 50.00 42.11 41.60 43.97 48.80 75.00 32.93 19.27 27.98 38.60
2 2 50.00 50.00 45.60 49.40 40.80 25.00 58.54 72.77 59.63 54.39
2 3 0.00 7.89 12.80 6.63 10.40 0.00 8.54 7.96 12.39 7.02
3 1 50.00 40.00 39.45 41.96 44.62 75.00 30.29 19.28 26.48 38.18
3 2 50.00 50.00 44.92 48.21 37.69 25.00 57.26 69.28 54.79 51.82
3 3 0.00 10.00 15.62 9.82 17.69 0.00 12.45 11.45 18.72 10.00
4 1 50.00 39.02 36.26 39.50 40.74 60.00 28.94 18.28 25.70 37.04
4 2 50.00 46.34 45.42 47.08 35.56 20.00 56.60 67.07 51.87 49.07
4 3 0.00 14.63 18.32 13.42 23.70 20.00 14.47 14.65 22.43 13.89
5 1 57.14 40.00 33.72 37.55 38.69 60.00 28.77 17.54 23.92 36.89
5 2 42.86 45.00 48.06 47.31 36.50 20.00 55.71 63.98 50.24 48.54
5 3 0.00 15.00 18.22 15.14 24.82 20.00 15.53 18.48 25.84 14.56
6 1 57.14 36.59 32.24 36.41 37.41 75.00 28.85 17.11 24.63 38.30
6 2 42.86 43.90 47.35 45.02 33.09 25.00 54.33 58.06 45.32 44.68
6 3 0.00 19.51 20.41 17.63 29.50 0.00 16.83 21.71 30.05 17.02
6 4 0.00 0.00 0.00 0.95 0.00 0.00 0.00 3.12 0.00 0.00

Note: Columns add up to 100% within a slice. All firms in our sample are represented.
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Table IA.7: Characteristic variation across industries. Firm-level characteristics ranked by
their importance to industry definitions, as measured by their (comparable in units) across-
industry standard deviations.

Rank Characteristic SD of Industry Means
1 securedind 0.35
2 indmom 0.35
3 mve 0.23
4 rd 0.20
5 age 0.19
6 ms 0.16
7 cash 0.14
8 dolvol 0.12
9 tang 0.11
10 ps 0.11
11 convind 0.11
12 herf 0.10
13 nanalyst 0.10
14 baspread 0.09
15 orgcap 0.06
16 betasq 0.06
17 divo 0.06
18 mom12m 0.05
19 idiovol 0.05
20 beta 0.05

B.4 Importance of characteristics in cluster formation

We have provided an interpretation of the clusters in terms of their compositions in Section 5.1
of the paper. We now provide an alternative interpretation of characteristic importance during
the k-means clustering process, with similar conclusions.

The k-means algorithm considers every characteristic with an equal weight during the k-
means procedure (after an initial standardization step) and thus every characteristic is equally
important when calculating distances or sample variances. We can nevertheless note that, by
construction, the k-means procedure (Algorithm 1) assigns points to the closest (in Euclidean
distance) cluster centroids, and so it is cluster centroids that entirely determine the allocation of
points (i.e. firms) to clusters. For a single dimension (i.e. coordinate of a point, or characteristic
of a firm), we can reason that if cluster centroids are far apart (in Euclidean distance) from
one another, then we may interpret this dimension as being important in partitioning points
into clusters according to some notion of similarity. Conversely, if cluster centroids are close
together in this dimension, we may interpret it as being less important.
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By exploiting the relationship between Euclidean distance and sample variance2 and the
comparable units between each dimension,3 we can calculate the sample variance of the cluster
centroids along a single dimension (i.e. for a single coordinate of the cluster centroids) and
compare these sample variances between dimensions (i.e. characteristics). This enables us
to rank each dimension (i.e. characteristic) according to the sample variances of the cluster
centroids along that dimension.

The results of such an exercise are presented in Table IA.8. Here, our notion of a char-
acteristic’s importance to a firm’s cluster membership is based on the argument above. It is
immediately evident that there is stability across slices in the rankings of the 20 most important
characteristics. One observation is that the most “important” firm-level characteristics – such
as sfe, operprof, pchsale_pchinvt, chpmia, sue & egr – are fundamental or analyst-based, not
derived from previous returns. Another observation is that size (mve) is not one of the most
“important” variables according to our clustering outcomes, in contrast to what Patton and
Weller (2022) found when clustering in the cross-section using a smaller set of characteristics.

2It can be shown that a set of observations with a higher sample variance than another set of observations also
has a higher sum of squared differences (i.e. squared Euclidean distances) between its points than the second set
does.

3A prerequisite to apply k-means is standardizing each of the input dimensions, which we have done.
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Table IA.8: Interpreting clusters using dispersions. Ranks of characteristics’ importance during the cluster formation process,
as measured by dispersion of cluster centroids.

Rank Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6 Aggregate
1 age ipo ipo ipo ipo sin ipo
2 ipo age operprof age age age age
3 sfe sfe age pchsale_pchinvt sfe ipo sfe
4 securedind operprof sfe sfe securedind sfe sin
5 pctacc cinvest pchsale_pchinvt operprof chpmia chpmia securedind
6 chfeps sue egr securedind sue securedind operprof
7 sue securedind securedind chpmia operprof pchsale_pchinvt pchsale_pchinvt
8 roaq egr chtx pchsale_pchrect pchsale_pchrect operprof chpmia
9 pchsale_pchrect pchsale_pchinvt bm egr pchsale_pchinvt acc sue
10 chtx bm bm_ia acc roeq ms egr
11 cfp bm_ia cashpr cfp_ia acc cfp_ia pchsale_pchrect
12 cfp_ia cfp pchgm_pchsale cfp indmom cfp cfp_ia
13 grltnoa cfp_ia cfp_ia rd cfp_ia cash cfp
14 chatoia chfeps cfp sue cfp roeq cinvest
15 bm rd pctacc pctacc rd rd pctacc
16 bm_ia chpmia sue ms pchgm_pchsale sue chtx
17 chpmia cashdebt pchsale_pchrect chtx ms pctacc rd
18 rd roaq rd cinvest pctacc cashpr bm
19 ms rsup acc pchsale_pchxsga baspread convind acc
20 cashpr chtx cinvest convind convind baspread bm_ia

Note: Only the top 20 ranks are shown. The ranking procedure is based on sample variances of cluster centroid coordinates (as discussed in the text). A
characteristic’s aggregate ranking is based on the mean of its individual scores after they have been normalized by per-slice totals. Clusters based on the full
sample of firms are considered.
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C Alternative text-based industry partition

In our paper, we defined our baseline industry partition based on SIC code ranges. We now con-
sider an alternative specification, applying our aggregate out-of-sample predictability analysis
using a definition of industry membership based on Hoberg and Phillips (2016)’s Text-Based
Network Industry Classifications (TNIC).4

There are a few hurdles to implementing this analysis, so we briefly describe them and our
solutions. The first hurdle is that it is unclear how many TNIC-based industries should be used
as a partition, given the absence of a principled method to do so by Hoberg and Phillips (2016)
themselves. We therefore define 5 TNIC-based industries as a compromise between the 3-4
characteristics-based clusters and the 10 SIC-based industries in our existing analyses.

The second hurdle is that the Hoberg and Phillips (2016) data library makes available only
a set of 25 industries formed with respect to their first full year of data (1997), while we wish
to use a more recent snapshot to ensure classifications are as up-to-date as possible. We also
wish to use a partition comparable in granularity to our existing partitions (i.e. 5 industries
is comparable to our SIC and clusters membership). We therefore recompute a set of 5 TNIC-
based industries using firm-pairwise similarity scores from 2009, following a procedure similar
to that laid out by Hoberg and Phillips (2016, Appendix B). The procedure involves recursively
merging industries that are closest (i.e. that have the highest industry-pairwise mean similarity
scores) and repeating the procedure to achieve the desired number of industries. As Hoberg
and Phillips (2016, Appendix B) point out, this approach is somewhat conservative because
there may exist other partitions with the same within-industry similarity scores; therefore,
if exploiting this particular (non-unique) TNIC partition using our procedure enables us to
measure some out-of-sample predictability, this does not rule out the possibility that even more
substantial levels of predictability could be detected using other variants of the Hoberg and
Phillips (2016) TNIC.

Once we have uniquely assigned each firm in our partition to one of the 5 TNIC-based
industries, we estimate the usual set of models on this new industry partition of the cross-
section, using the usual validation & test sets. The resulting R2

OOS values are displayed in Table
IA.9.

Comparing Panel (c) of Table IA.9 to Panel (c) of Tables 4 & 5 in the paper, the highest R2
OOS

of 0.95% on the full sample of firms lies in between similar values using other partitions of
the cross-section (0.76% on SIC-based industry groupings, and 1.05% on cluster groupings).
The magnitude remains lower than that attained by using the cluster groupings (in Table
5 of the paper), and, importantly, is achieved by a predictive model that incorporates both

4For a description of the use of various industry groups in the study of stock returns see e.g., Chan et al. (2007)
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heterogeneity and sparsity (By-industry Lasso).
This exercise confirms that exploiting the alternative industry partition derived fromHoberg

and Phillips (2016)’s TNIC can also produce more accurate return forecasts than when this
information is ignored.

Table IA.9: Predictability using TNIC industries. Aggregate out-of-sample predictability,
measured by R2

OOS (%), when partitioning firms by industry membership according to Hoberg
and Phillips (2016)’s Text-Based Network Industry Classifications (TNIC).

Panel (a) Panel (b) Panel (c)

Model Top
1,000 Model Top

2,000 Model All
Firms

Two-stage Ridge 1.75 Two-stage Ridge 1.53 By-industry Lasso 0.95
Pooled ElasticNet 1.74 Pooled ElasticNet 1.50 Pooled Lasso 0.94
Pooled Ridge 1.74 Pooled Ridge 1.50 Two-stage Ridge 0.92
By-industry ElasticNet 1.72 By-industry Ridge 1.47 Pooled Ridge 0.91
By-industry Ridge 1.66 Pooled Lasso 1.46 By-industry ElasticNet 0.90
Pooled Lasso 1.66 By-industry Lasso 1.40 By-industry Ridge 0.90
By-industry Lasso 1.57 Two-stage Lasso 1.36 Pooled ElasticNet 0.90
Two-stage Lasso 1.53 By-industry ElasticNet 1.30 Two-stage Lasso 0.87
Pooled OLS -9.66 Pooled OLS -8.98 Pooled OLS -5.49
By-industry OLS -13.21 By-industry OLS -12.16 By-industry OLS -7.20
Two-stage OLS -13.21 Two-stage OLS -12.16 Two-stage OLS -7.20
Note: Each panel represents results from estimating the models based on a particular subset of firms and
then generating predictions for that same subset: (a) on the largest 1,000 firms by market capitalization,
(b) on the largest 2,000 firms, and (c) on the full sample.

D Small firms

We explore our ability to detect out-of-sample predictability on relatively smaller firms by re-
estimating the predictive models on the subset of the smallest 1,000 and smallest 2,000 firms
by market capitalization, keeping the same industry and cluster groupings as our main results
on overall predictability.

These results are shown in Panels (a) and (b), respectively, of Tables IA.10 and IA.11. We
continue to show the main results on the full set of firms in Panel (c) of each table, which are
therefore identical to Panel (c) of Tables 4 and 5 in the paper.

A few conclusions can be drawn from Tables IA.10 and IA.11. First, recalling that models
estimated on the largest firms detected a higher level of out-of-sample predictability than
models estimated on the full set of firms in our paper, it is therefore not surprising that the
level of predictability deteriorates when models are estimated on the smallest firms, though
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it remains high: for example, the By-cluster Lasso model detects an R2
OOS value of 0.70%

when estimated on the smallest 1,000 firms, and an R2
OOS value of 0.98% when estimated

on the smallest 2,000 firms, in Table IA.11 Panels (a) and (b), respectively. Second, using
cluster partitions rather than industry partitions allows us to detect higher levels of OOS
predictability when we condition on the smallest firms when estimating the models, as can
be seen by comparing the general R2

OOS magnitudes between Tables IA.10 and IA.11. Third,
the best-performing model when training on the smallest 1,000 firms is the By-cluster Lasso,
which is a sparse model, so the cluster partition continues to demonstrate its usefulness for
detecting a parsimonious set of predictive characteristics for the smallest firms in the cross-
section. Therefore, this analysis confirms a number of our main findings in the paper when
applied to the smallest firms in our sample.

We can also draw a high-level contrast to the results reported by GKX, with the usual caveats
that our time periods and samples differ. GKX reported their highest R2

OOS of 0.47% (attained
by a deep neural net) on the bottom 1,000 firms by size. Our results in Table IA.11 Panel (a)
show our highest R2

OOS on our bottom 1,000 firms by size is 0.70%, attained by the By-cluster
Lasso. Therefore, our results remain higher in magnitude on this particular subset of firms.

We now examine the frequency of selection of coefficients for this By-cluster Lasso model
estimated on the smallest 1,000 firms, with results shown in Table IA.12. These results indicate
that a more diverse, larger set of characteristics can be selected when estimating on the smallest
stocks only: 15 variables appear in Table IA.12. As a comparison, when we estimated the same
predictive model on all available firms, 5 predictive variables were selected (in Table 7 of the
paper) and these are a direct subset of the 15 selected here in Table IA.12. At the same time,
only a subset of the full set of predictive variables used in our study are ever selected, so we
argue that our methodology continues to show its worth for uncovering sparsity among the zoo
of variables that can predict next-month firm-level returns successfully out-of-sample.
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Table IA.10: Small-firm predictability using industries. Aggregate out-of-sample predictabil-
ity, measured by R2

OOS (%), when partitioning firms by industry membership.

Panel (a) Panel (b) Panel (c)

Model
Bottom
1,000 Model

Bottom
2,000 Model

All
Firms

Pooled Lasso 0.38 Two-stage Ridge 0.53 Two-stage Ridge 0.76
Pooled ElasticNet 0.37 Pooled Ridge 0.52 Pooled ElasticNet 0.73
Two-stage Lasso 0.35 By-industry Ridge 0.50 Pooled Ridge 0.73
Pooled Ridge 0.23 Pooled ElasticNet 0.49 By-industry Ridge 0.72
By-industry Lasso 0.21 By-industry ElasticNet 0.46 Pooled Lasso 0.71
Two-stage Ridge 0.19 Pooled Lasso 0.35 By-industry ElasticNet 0.69
By-industry ElasticNet 0.16 Two-stage Lasso 0.33 By-industry Lasso 0.65
By-industry Ridge 0.15 By-industry Lasso 0.26 Two-stage Lasso 0.65
Pooled OLS -2.99 Pooled OLS -3.69 Pooled OLS -3.77
By-industry OLS -4.56 By-industry OLS -5.10 By-industry OLS -5.44
Two-stage OLS -4.56 Two-stage OLS -5.10 Two-stage OLS -5.44

Note: Each panel represents results from estimating the models based on a particular subset of firms
and then generating predictions for that same subset: (a) on the smallest 1,000 firms by market
capitalization, (b) on the smallest 2,000 firms, and (c) on the full sample.

Table IA.11: Small-firm predictability using clusters. Aggregate out-of-sample predictability,
measured by R2

OOS (%), when partitioning firms by cluster membership.

Panel (a) Panel (b) Panel (c)

Model Bottom
1,000 Model Bottom

2,000 Model All
Firms

By-cluster Lasso 0.70 By-cluster ElasticNet 0.99 Two-stage Lasso 1.05
By-cluster ElasticNet 0.70 By-cluster Lasso 0.98 By-cluster Lasso 1.03
Pooled Ridge 0.64 Two-stage Lasso 0.98 By-cluster ElasticNet 1.03
Two-stage Ridge 0.62 Pooled Ridge 0.94 Pooled Lasso 0.97
By-cluster Ridge 0.59 Two-stage Ridge 0.94 Two-stage Ridge 0.96
Two-stage Lasso 0.54 Pooled ElasticNet 0.91 By-cluster Ridge 0.95
Pooled ElasticNet 0.52 By-cluster Ridge 0.89 Pooled Ridge 0.95
Pooled Lasso 0.48 Pooled Lasso 0.89 Pooled ElasticNet 0.94
Pooled OLS -4.43 Pooled OLS -4.69 Pooled OLS -4.81
By-cluster OLS -32.25 By-cluster OLS -52.93 By-cluster OLS -61.38
Two-stage OLS -32.25 Two-stage OLS -52.93 Two-stage OLS -61.38
Note: Each panel represents results from estimating the models based on a particular subset of firms
and then generating predictions for that same subset: (a) on the smallest 1,000 firms by market
capitalization, (b) on the smallest 2,000 firms, and (c) on the full sample.
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Table IA.12: Small-firm By-cluster Lasso selected predictors. Frequency of selection (% of
slices) of characteristics by cluster, when estimating the by-cluster Lasso model on the smallest
1,000 firms by market cap.

Characteristic Cluster 1 Cluster 2 Cluster 3 Cluster 4
(Intercept) 100 100 100 100
baspread 0 0 33 100
cashpr 33 17 17 0
chfeps 0 17 0 0
chmom 0 0 17 0
chpmia 0 0 17 100
dfy_mkt 0 17 0 0
dp_mkt 33 17 17 0
ep_mkt 17 33 0 0
lev 0 17 0 0
mom36m 0 17 17 0
mve 0 17 0 0
pchgm_pchsale 0 0 0 100
pctacc 0 17 0 0
salecash 0 17 0 0
sue 33 17 33 100
Note: The model was estimated based on the smallest 1,000
firms, once per slice.

E Regularizing linear models

E.1 Introduction

The predictive models we use in this study take the form of a linear regression model in d

dimensions,
y = w′x , (1)

where w, x are d-dimensional vectors and y is a scalar. For simplicity we do not include explicit
intercept or noise terms in this formulation. Take n samples available on which to estimate
such a model, and recall that there are d variables/dimensions in each sample. We stack the
samples together into an n× d data matrix X and n×1 vector y. Our objective is to estimate a
weights vector w so that the linear regression model (1) holds for all samples:

y=w′X. (2)

To achieve this, one might wish to estimate the model using the OLS procedure. This would
involve optimizing the weights vector w to minimize the residual sum-of-squares RSS(w),
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which would lead to the well-known closed-form solution

ÒwOLS = argmin
w

RSS(w) (3)

= argmin
w

n
∑

m=1

(ym −w′xm)
2

= (X′X)−1X′y.

This is valid as long as X is full-rank, so that X′X is invertible; otherwise, the OLS estimation
problem is ill-posed. When the input samples are high-dimensional this is often the case and
OLS cannot be used. Our study involves high-dimensional prediction.

Tikhonov and Arsenin (1977) introduced the concept of regularization to solve such ill-posed
estimation problems. The particular form of regularization that we employ in this study is to
penalize the weights vector w during the estimation procedure. More precisely, we compute
some norm ||w|| of the weights vector and add it to the objective function that we wish to
minimize, while weighting the relative degree of penalization using a hyperparameter λ > 0:

Òw= arg min
w

RSS(w) +λ||w||. (4)

Notice that our regularized/penalized optimization problem (4) augments the classical
OLS optimization problem (3) with a penalty term λ||w||. This has the consequence of the
optimization procedure producing an estimate Òw that has a lower norm ||Òw|| than it otherwise
would have if no penalization were applied.

Another point worth noting is that we must tune (i.e., pick an optimal value for) the λ
hyperparameter. Since our data involve time dependencies, we use the slicing procedure in
Section 3.2 of the paper to tune all hyperparameters out-of-sample in a way that respects the
temporal dependencies.

Finally, note that the linear regression problem will retain its original forms (1) and (2).
This is because the regularization procedure results in a (more suitable) estimate of the weights
w using the available samples while not affecting the linear functional form of the regression
model. This has the advantage of allowing us to easily introduce ML techniques into the models
of firm-level heterogeneity that we described in Section 3.1 of the paper.

E.2 Regularized methods used in this study

We now make the estimation problem (4) concrete.

22



Ridge regression

If we use the square of the `2 norm, ||w||22 =w′w, as our penalization term, we obtain another
closed-form solution,

ÒwRidge = argmin
w

RSS(w) +λ||w||22
= (X′X+λI)−1X′y,

and this technique is called Ridge regression. It is due to Hoerl and Kennard (1970).
Note that I is the identity matrix, so the closed-form expression above effectively adds some

weight λ to the diagonals of X′X before inverting it. This illustrates how the potentially ill-
conditioned term X′X is made invertible. It also implies that the elements of ÒwRidge are shrunk
towards zero, with the degree of shrinkage increasing in λ.

Lasso

If we use the `1 norm, ||w||1 =
∑d

m=1 |wm|, as our penalization term,

ÒwLasso = arg min
w

RSS(w) +λ||w||1

then this technique is called the Lasso. It is due to Tibshirani (1996).
As we explained in Section 2.2 of the paper, the estimated coefficient vector ÒwLasso will

tend to be sparse; that is, to have zero elements in place of elements with a small magnitude.
Wainwright (2009) and Tropp (2006) explain that the Lasso can be interpreted in terms of
variable selection: the intuition is that the `1 penalty is the closest convex relaxation of the
`0 discrete variable selection penalty. This property means that predictive variables whose
coefficients are non-zero can be directly interpreted as Lasso-selected variables.

ElasticNet

If we use a convex combination of the `1 and squared `2 norm elements as the penalization
term,

ÒwElasticNet = arg min
w

RSS(w) +λ
d
∑

m=1

�

αw2
m + (1−α)|wm|

�

then this technique is called the ElasticNet. It is due to Zou and Hastie (2005). Although often
used in practice,5 one disadvantage of the ElasticNet for our purposes is that it requires an

5A more general machine learning technique is Multitask Learning, see e.g., Argyriou et al. (2006), Evgeniou
and Pontil (2004), and Jalali et al. (2010).
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additional hyperparameter α ∈ (0,1) to be tuned.
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