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Machine traders
Already prevalent, and improve our ability to make sense of data
▶ Machine-driven funds account for 1/3 of all institutional trading (>

pension + mutual funds combined), and 30% of hedge fund AuM
▶ As Data becomes Bigger, we are likely to rely even more heavily on

machines as part of the investment process

Machines can be beneficial to human investors...
▶ Detect asset return predictability (Gu, Kelly, and Xiu 2020, ...)
▶ Improve upon human forecasts (Bianchi, Ludvigson, and Ma 2022;

Van Binsbergen, Han, and Lopez-Lira 2023; Silva and Thesmar 2021; Cao,
Jiang, Wang, and Yang 2021)

... but are they beneficial in practice?
▶ Machines are designed by humans
▶ We humans suffer from cognitive biases (Tversky and Kahneman 1974)
▶ Do machines encode our biases and hold us back from our goals?
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This paper

▶ I examine how investors specify machine-driven trading strategies

▶ I quantify extent to which they benefit from data as a result

▶ Highly controlled (yet realistic) setting: the Quantiacs platform,
which runs contests for trading futures contracts

▶ Investors face a prediction problem, using (only) historical data
▶ I know exactly what predictive variables investors can use
▶ Investors’ objectives are fixed (risk preferences, horizon, …)
▶ Sizable financial incentives offered to top performers
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Findings

▶ Investors in this setting use systematic machine-driven trading
strategies to solve their prediction problem

▶ Yet their human behavioral biases play play an important role in
how they use data in specifying their trading strategies

▶ They are overly reliant on familiar variables...
▶ ... even for “hard” information that they are endowed with
▶ Big(ger) Data is not necessarily helpful

▶ Investors who do overcome their biases (with experience) can
benefit substantially from data availability

▶ Economically significant: up to 2 units of OOS SR
▶ Experienced investors more optimally weight predictors...
▶ ... and ignore fewer variables altogether
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Quantiacs FinTech platform
Business model
▶ Run futures paper trading contests for investors, incentivizing

out-of-sample Sharpe Ratio maximization ⇒ common goal
▶ Offer profit-sharing contracts to top 3 ⇒ monetary payoffs1

▶ Seek successful systematic investors

Investors follow systematic portfolio rules
▶ Total of 874 participants over 12 contests (live: 2014-2019)

Controlled information environment
▶ Investors have access to the same predictive variables

▶ Not possible to upload external variables
▶ Added 54 macro variables between contests 7 and 8

▶ e.g. CPI, non-farm payrolls, pending home sales, …

1. Notional values: $1,000,000, $750,000 and $500,000, resp.
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Investors code daily portfolio rules...
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... and observe historical performance prior to contest entry
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Platform evaluates performance out-of-sample (OOS)

Calendar
time

tt − 2 t − 1 t + 1

Backtest period
(in-sample Sharpe Ratio)

Live period
(out-of-sample Sharpe Ratio)
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Contestants are publicly scored based on performance
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Model disagreement is high
▶ Within a contest, all systematic traders access the same dataset
▶ ⇒ Heterogeneity should be due to model disagreement (Cookson and

Niessner 2020), not heterogeneous information
▶ Low average correlation (i.e. agreement) of trading activity,

within-contest ⇒ high model disagreement
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Such model disagreement impacts performance outcomes

Contest index t
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Confirming model disagreement is due to differences of opinion (1/3)

▶ To analyze how trades respond to information, I exploit institutional
variation in variable release dates on the Quantiacs trading platform

▶ Macroeconomic variables are updated once a month...
▶ ... But not all the 54 indicators are consistently updated:

Macro release day τ

N
u

m
b

e
r 

o
f 
m

a
c
ro

 v
a

ri
a

b
le

s
 r

e
le

a
s
e

d

25

30

35

40

45

50

55

1990 1995 2000 2005 2010 2015 2020

▶ ⇒ Variation in the aggregate informativeness of macro release days
▶ Use interpretable machine learning techniques to measure the

out-of-sample predictive informational content of each macro release day
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Confirming model disagreement is due to differences of opinion (2/3)
▶ Repeatedly train a Random Forest on actual macro data from platform

▶ Gu, Kelly, and Xiu (2020); Van Binsbergen, Han, and Lopez-Lira (2023)
▶ Time-varying model fits, matched to contest Live periods

▶ Take care to avoid look-ahead bias – just like the trading strategies
▶ Models detect economically significant OOS return predictability:
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▶ Informativenessτ index: calculate additive SHAP values (Lundberg and
Lee 2017) per variable & model fit, then aggregate them up over the
subset of macro indicators released on a specific day τ

▶ Time series regressions measure the sensitivity βi of each strategy i’s
(standardized) trading volume across macro release days τ :

Volumei,τ = αi + βi × Informativenessτ + ϵi,τ (1)
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Confirming model disagreement is due to differences of opinion (3/3)

−ρi,j︸ ︷︷ ︸
Trading
activity

dissimilarity

= γ × δ(β̂i, β̂j)︸ ︷︷ ︸
Disagreement
about macro

predictive info.

+ ϕt + ϵi,j (2)

Dependent Variable: −ρi,j
(1) (2) (3) (4) (5) (6)

log
(
|β̂i − β̂j|

)
0.0486∗∗∗ 0.0508∗∗∗
(0.0030) (0.0026)

log
(
1 + |β̂i − β̂j|

)
0.2423∗∗∗ 0.2866∗∗∗
(0.0225) (0.0362)

arcsinh
(
|β̂i − β̂j|

)
0.1952∗∗∗ 0.2307∗∗∗
(0.0170) (0.0258)

Intercept ✓ ✓ ✓
Contest FEs ✓ ✓ ✓
Observations 19,640 19,640 21,512 21,512 21,512 21,512
R2 0.343 0.380 0.338 0.420 0.345 0.428
Within R2 0.371 0.416 0.424

Note: standard errors (in parentheses) are clustered by contest and contestant.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

14/36



Institutional Setting

Model and Performance Heterogeneity

Role of Experience

Data Usage

Gains from Access to (Bigger) Data

Investor Behavior When Solving a Prediction Problem

Conclusion



In search of a behavioral explanation

▶ The strength of disagreement is somewhat puzzling
▶ Investors observe daily prices & monthly macro indicators

going back to 1990 ⇒ long timeseries of observations
▶ Yet, clear lack of convergence over calendar time

▶ Investigate presence of behavioral bias in how investors use
predictive information

▶ If true, likely to dissipate with experience
▶ Inexperienced investors are more prone to behavioral biases

(e.g. List 2003, ...)
▶ Prediction: within-contest, experienced investors should

outperform inexperienced investors
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Inexperienced investors do perform worse
▶ Holds within contest; i.e. fixing a common dataset
▶ Holds within investor; i.e. accounting for unobserved skill

Dependent variable:
Backtest SRBest

i,t Live SRBest
i,t

OLS panel OLS panel
linear linear

(1) (2) (3) (4)
Contests experiencedi,t 1.161∗∗∗ 1.338∗∗∗ 0.445∗∗ 1.261∗∗∗

(0.055) (0.505) (0.178) (0.456)

Intercept ✓ ✓
Contest FEs ✓ ✓
Contestant FEs ✓ ✓
Observations 874 874 874 874
R2 0.156 0.024 0.035 0.040

Note: standard errors (in parentheses) are clustered by
contest and contestant. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 16/36



Investors’ models agree more as investors gain experience
▶ ρi,j,t measures trading activity similarity between investors i, j for

entries made in contest t, computed on daily turnovers from 1990+
▶ Again, holds within contest; i.e. fixing a common dataset

Dependent Variable: ρi,j,t

(1) (2) (3)
Contests experiencedi,j,t 0.0625∗∗∗ 0.0640∗∗∗ 0.0929∗

(0.0176) (0.0182) (0.0436)

(Intercept) 0.3087∗∗∗
(0.0207)

Contest FEs ✓ ✓
Contestant i FEs ✓
Observations 25,829 25,829 25,829
R2 0.00112 0.00939 0.30492

Note: standard errors (in parentheses) are clustered by
contest and contestant. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Data usage

▶ So far, we’ve seen evidence that inexperienced investors, i.e.
those who are more prone to behavioral biases,
▶ disagree more, and
▶ perform worse

▶ How are their models of the world (mis)specified?
▶ In what ways do inexperienced investors fail to make optimal

use of the data they are endowed with?

▶ Empirically, focus on the 42 macroeconomic indicator inputs,
which are available during later contests
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Empirical strategy to measure usage of data
Macro
variable
release

Contest dates
t = 1

. . .

t = 7

t = 8

. . .

t = 12

Calendar time τ

Macro
variables

unavailable

▶ Macro variables are released at a lower frequency
(monthly/quarterly) than portfolios are updated (daily)

▶ Compare portfolio turnovers on macro release days vs. not
▶ Include a placebo test for earlier contests
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Inexperienced investors respond weakly to data availability

Volumei,τ

With data availability Placebo group
(1) (2) (3) (4)

(Intercept) 0.002∗∗∗ 0.003∗∗∗ 0.002∗∗∗ 0.002∗∗∗
(0.0004) (0.0001) (0.001) (0.001)

Macro releaseτ −0.009∗∗∗ −0.011∗∗∗ 0.0002 0.0002
(0.003) (0.002) (0.012) (0.012)

Experiencedi,t −0.009 0.0001
(0.007) (0.001)

Macro releaseτ × Experiencedi,t 0.076∗∗ 0.001
(0.036) (0.017)

Observations 3,234,115 3,234,115 2,059,615 2,059,615
R2 0.00000 0.00001 0.000 0.000

Std. errs. are clustered by contest & contestant: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
Volume is standardized (i.e. z-score) within-trading strategy.
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Inexperienced investors underweight genuine predictors

Dependent Variable: Volumei,τ

(1) (2) (3)
Experiencedi,t 0.0673∗∗ -0.3229∗

(0.0184) (0.1208)

Informativenessτ 0.6774∗∗ 0.6348∗
(0.2132) (0.2362)

Experiencedi,t × Informativenessτ 1.025∗∗
(0.2357)

Intercept ✓
Model Year FEs ✓ ✓
Observations 142,332 142,332 142,332
R2 0.00014 0.00034 0.00054

Note: standard errors (in parentheses) are clustered by
contest and contestant. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Investors are influenced by their prior familiarity
▶ Familiarity: mentions in Factiva news articles or Google Books
▶ Finding is consistent with

▶ availability heuristic (Tversky and Kahneman 1973, 1974)
▶ recognition heuristic (Goldstein and Gigerenzer 1999, 2002)

Dependent Variable: Volumei,τ

Familiarity Index: News Articles Books
(1) (2) (3) (4) (5)

Experiencedi,t 0.0673∗∗ -0.3381 -0.1500
(0.0184) (0.3085) (0.2425)

Familiarityτ 0.0027∗∗∗ 0.0026∗∗∗ 0.0026∗∗∗ 0.0026∗∗∗
(0.0003) (0.0003) (0.0005) (0.0005)

Experiencedi,t × Familiarityτ 0.0043 0.0023
(0.0031) (0.0024)

Intercept ✓
Benchmark Year FEs ✓ ✓ ✓ ✓
Observations 142,332 142,332 142,332 142,332 142,332
R2 0.00014 0.00019 0.00034 0.00014 0.00029

Note: standard errors (in parentheses) are clustered by contest and contestant.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 22/36
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Gains from access to (Bigger) Data

▶ We’ve seen evidence that inexperienced investors, i.e. those
who are more prone to behavioral biases, make poor use of
the macroeconomic indicators:
▶ They seem to underweight genuine predictors
▶ And rely instead on familiar variables

▶ Do they nevertheless gain some benefit from having access to
these additional macroeconomic predictive variables?

▶ No! Inexperienced investors, who tend to mis-specify their
models of the world, fail to benefit from access to Bigger Data
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Empirical strategy to measure gains from Big(ger) Data
The experimental ideal

▶ Each investor randomly assigned to an information regime: with/without
the 54 new predictive macro variables

▶ Compare performance with/without, across investor groups

The reality of the contest setting
▶ During each contest, all investors have access to the same set of

predictive variables (and have identical risk preferences, horizon, …)
▶ Contests 1-7: no investor could access the macro variables
▶ Contests 8-12: all investors could access them

▶ Due to attrition, few investors participate in both regimes

⇒ Compare investors’ performance across information regimes
▶ Major confounders already controlled by Quantiacs setting
▶ Compare OOS SR in excess of a benchmark portfolio
▶ Assumption: similar investor populations (see next slide) ⇒ differences in

excess performance attributed to data availability
▶ Two-stage “Heckit” model (e.g. Seru, Shumway, and Stoffman 2010) to

rule out selection effects as driver
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Population balance: before vs. after macro variables added

Investor-contest-level balance
Control (N=289) Treatment (N=502)
Mean Std. Dev. Mean Std. Dev. Diff. in Means p value

Contests experiencedi,t 1.0796 0.3183 1.1058 0.3985 0.0262 0.3108
Percentile(ScoreBest

i,t−1) 0.6445 0.2570 0.7102 0.2588 0.0657 0.3592

Contest-level balance
Control (N=6) Treatment (N=4)

Mean Std. Dev. Mean Std. Dev. Diff. in Means p value
Meant(Contests experiencedi,t) 1.2092 0.0544 1.2191 0.0810 0.0099 0.8389
Fraction of first-time contestants at t 0.8415 0.0534 0.8580 0.0396 0.0165 0.5914
Fraction of last-time contestants at t 0.7813 0.0778 0.8542 0.0567 0.0729 0.1263

Note: excluding first & last contests, due to fraction calculations.
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Benefits of data availability concentrate among experienced investors

Dependent variable:
Excess Live SRBest

i,t

(1) (2) (3)
(Intercept) −2.181∗∗∗ −1.959∗∗∗ −1.470∗∗

(0.566) (0.525) (0.626)

Contests experiencedi,t 1.030∗∗∗ 1.003∗∗∗ 0.589∗∗∗
(0.263) (0.240) (0.186)

Macro variables availablet −0.318 −1.352
(0.609) (1.069)

Contests experiencedi,t × Macro variables availablet 0.908∗∗
(0.439)

Observations 830 830 830
R2 0.048 0.053 0.063

Note: standard errors (in parentheses) are clustered by contest and contestant.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Heckit estimates negative selection bias after new variables available
Live SRBest

i,t
Stage All contests Contests 1-7 Contests 8-12

1. Selection (Intercept) 1.95∗∗∗ 2.38∗∗∗ 1.50∗∗∗

(0.18) (0.29) (0.34)

Contests experiencedi,t −0.88∗∗∗ −1.22∗∗∗ −0.77∗∗∗

(0.05) (0.10) (0.05)

Quantopian search indext −0.01∗∗ −0.00 −0.00

(0.00) (0.00) (0.00)

Ratio of entries to contest meani,t−1 0.23∗∗∗ 0.24∗∗∗ 0.22∗∗∗

(0.04) (0.08) (0.04)

2. Outcome (Intercept) −0.42∗∗∗ −0.79∗∗ −0.04

(0.13) (0.32) (0.17)

Contests experiencedi,t 0.84∗∗∗ 0.55 0.86∗∗∗

(0.17) (0.39) (0.20)

ρ −0.39 0.17 −0.55

σ 2.13 1.89 2.31

Inverse Mills Ratio −0.83∗∗∗ 0.33 −1.27∗∗∗

(0.32) (0.54) (0.41)

R2 0.04 0.07 0.04

Num. obs. 1482 482 1000

Censored 621 163 458

Observed 861 319 542
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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2. Outcome (Intercept) −0.42∗∗∗ −0.79∗∗ −0.04

(0.13) (0.32) (0.17)

Contests experiencedi,t 0.84∗∗∗ 0.55 0.86∗∗∗

(0.17) (0.39) (0.20)

ρ −0.39 0.17 −0.55

σ 2.13 1.89 2.31

Inverse Mills Ratio −0.83∗∗∗ 0.33 −1.27∗∗∗

(0.32) (0.54) (0.41)

R2 0.04 0.07 0.04

Num. obs. 1482 482 1000

Censored 621 163 458

Observed 861 319 542
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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Investor behavior when solving a prediction problem

▶ We have evidence that investors can underweight genuine
predictors, due to a behavioral bias

▶ What are the consequences of investor bias against predictive
variables?
▶ Because of unfamiliarity with these variables, for example

▶ I now show such a bias may lead investors to completely
ignore genuinely predictive variables
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Baseline prediction problem (1/2)

Investor’s goal
▶ To maximize portfolio OOS Sharpe Ratio over fixed horizon:

max
w

µTw√
wTΣw

(3)

▶ Focus on simple case of 1 asset with expected return µ

▶ Assume second moment is known (Merton 1980)
▶ Expected return µ must still be estimated

Investor can make use of historical data
▶ v: historical mean returns from (similar but not identical)

futures contracts that expired in the past
▶ S: corresponding historical values of some predictive variables

29/36



Baseline prediction problem (2/2)

Simple prediction problem
▶ Expected return is linear in predictive signals:

µ =

m∑
i=1

bisi = sb (4)

▶ So investor must infer b based on historical data v & S
▶ Similar to Martin and Nagel (2022)

▶ Both over- and under-estimates of µ can lead to sub-optimal
Sharpe Ratios (Best and Grauer 1991), so penalize both

▶ Investor could solve this problem by picking b̂ to minimize

min
b∈Rm

||v − Sb||2 (5)
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Deviating from the rational baseline

▶ A biased investor who is averse to unfamiliar variables is
modeled as fearing worst-case outcomes
▶ In the spirit of Cao, Han, Hirshleifer, and Zhang (2011)

▶ Suppose Nature conspires to maximize the error by perturbing
the historical signals, up to an uncertainty set U

▶ The investor acts to minimize the worst-case error

min
b∈Rm

max
U∈U

||v − (S+U)b||2, (6)

▶ This can lead to the biased investor underweighting (or even
completely ignoring) genuinely predictive variables

▶ The next few slides show why, for the special case of a
constant bias against variables
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Two equivalencies, from ML & optimization literatures
Biased investor’s learning problem (6) & the “square-root lasso”
▶ Assumption on the form of U that the investor perceives: that

column-wise perturbations have ℓ2-norms bounded by δ

▶ So the investor will solve

min
b∈Rm

||v − Sb||2 + δ||b||1 (7)

▶ Due to Xu, Caramanis, and Mannor (2010)

The “square-root lasso” (7) & the lasso
▶ They’re equivalent; i.e. have the same regularization paths up to a

one-to-one change of parameters δ for λ, for a fixed v,S
▶ So the investor will solve

min
b∈Rm

1

2
||v − Sb||22 + λ||b||1 (8)

▶ See Tian, Loftus, and Taylor (2018) and Xu, Caramanis, and Mannor (2010)
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Consequences of a bias against predictive variables
Sparse closed-form solution to the biased prediction problem
▶ Under an orthonormality assumption on S, the investor’s estimates

of each element k of b incorporate sparsity:

b̂k = sign(sT
k v)max

{
|sT

k v|−λ, 0
}
, (9)

▶ λ ≥ 0 bounds the magnitude of perturbations she fears Nature will
inject ⇒ captures the effect of the investor’s bias

▶ Higher λ threshold ⇒ fewer predictive variables incorporated by the
investor into her (biased) learning problem

Test: (in)experience and variable usage
▶ Evidence that inexperienced investors are biased
▶ Do inexperienced investors actually use fewer predictive variables?
▶ Test this by numerical estimation on investor daily returns
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Estimating investors’ usage of predictive variables
▶ Tackle this by estimating the lasso:

min
b∈Rm

||v − Sb||22 + λ||b||1 (10)

▶ Back out an investor’s estimated b̂ using Friedman, Hastie, Höfling,
and Tibshirani (2007)’s min. algorithm, and λ̂ by cross-validation

▶ S: 880 lagged predictive variables based on daily futures market
data, and the values of the additional 54 macroeconomic variables
when available

▶ v: daily portfolio returns of the investor

▶ Estimate at the investor-contest level

▶ Report the number of non-zero b̂ values, i.e. variables used
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Inexperienced investors ignore more predictive variables
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Main takeaways

▶ When investors face a prediction problem, their behavioral
biases play an important role in how they use data
▶ They overly rely on familiar variables...
▶ ... even for “hard” information that they are endowed with
▶ Big(ger) Data is not necessarily helpful

▶ Corollaries:
▶ Investors mis-specify their models of the world
▶ Machine traders encode human biases

▶ Investors who do overcome their biases (with experience)
benefit substantially from data availability
▶ Economically significant: up to 2 units of OOS SR
▶ Involves assigning a higher weight to genuine predictors
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Thank you!
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