
Rebecca Barter

D a t a m e e t s N a r r a t i v e

A Basic Data Science Workflow A u g u s t 1 8 , 2 0 1 7

D e v e l o p i n g a c l e a n a n d e a s y a n a l y s i s w o r k f l o w t a k e s a

r e a l l y, r e a l l y l o n g t i m e . I n t h i s p o s t , I o u t l i n e t h e w o r k f l o w

t h a t I h a v e d e v e l o p e d o v e r t h e l a s t f e w y e a r s .

R e b e c c a B a r t e r

Developing a seamless, clean workflow for data analysis is harder than it sounds, especially
because this is something that is almost never explicitly taught. Apparently we are all just
supposed to “figure it out for ourselves”. For most of us, when we start our first few analysis
projects, we basically have no idea how we are going to structure all of our files, or even what
files we will need to make. As we try more and more things in our analysis (perhaps generating
a large number of unnecessary files called analysis2.R , next-
analysis.R , analysis-
writeup.Rmd , data_clean.csv , regression_results.csv and data_all.csv along
the way), we find that our project folder gets jumbled and confusing. The frustration when we
come back to the project 6 months later and can’t remember which file contained the code that
lead to the final conclusions is all too real.

This is why I have decided to describe in (possibly too much) detail the data cleaning workflow
that I have somehow ended up with. I find this workflow to be particularly useful when dealing
with messy (and possibly large) datasets that need several cleaning steps. Note that I did not
develop this workflow in conjunction with any resources, I simply figured out what worked best
for me via trial-and-error (a process which took 5 years and is definitely still ongoing). There will
be several other resources out there on the internet describing “optimal workflows”, and these
are definitely worth a read too (although a quick google found surprisingly few with the level of
detail needed for a beginner). The key is figuring out a workflow that works best for you. That
may be similar to mine, or it may not be.

If you decide to keep reading (perhaps because you too suffer from messy-project-syndrome
and want some relief), by the end of this post you will know far too much about me and how I
spend my time. As you will discover, I am particularly thorough when I clean data, and can
spend hours simply making sure that I know what is in the data and moulding it so that it exactly
adheres precisely to the format that I consider “clean”.

In this post I will describe my thought process as I download, clean and prepare for analysis the
data from the 2016 American Time Use Survey (ATUS). I have written my process in sufficient
detail such that you can follow along if you’d like to.

The American Time Use Survey is a yearly survey administered by the U.S. Census Bureau
and sponsored by the Bureau of Labor Statistics. As with all surveys, it is probably good
practice to first get an idea of what kind of population its respondents are supposed to

http://www.rebeccabarter.com/blog/2017-08-16-data-science-workflow/
http://twitter.com/share?url=http%3a%2f%2fwww.rebeccabarter.com%2fblog%2f2017-08-16-data-science-workflow%2f&text=A%20Basic%20Data%20Science%20Workflow&via=rlbarter
http://plus.google.com/share?url=http%3a%2f%2fwww.rebeccabarter.com%2fblog%2f2017-08-16-data-science-workflow%2f
http://www.facebook.com/sharer/sharer.php?u=http%3a%2f%2fwww.rebeccabarter.com%2fblog%2f2017-08-16-data-science-workflow%2f
http://reddit.com/submit?url=http%3a%2f%2fwww.rebeccabarter.com%2fblog%2f2017-08-16-data-science-workflow%2f&title=A%20Basic%20Data%20Science%20Workflow
http://www.linkedin.com/shareArticle?url=http%3a%2f%2fwww.rebeccabarter.com%2fblog%2f2017-08-16-data-science-workflow%2f&title=A%20Basic%20Data%20Science%20Workflow
http://www.stumbleupon.com/submit?url=http%3a%2f%2fwww.rebeccabarter.com%2fblog%2f2017-08-16-data-science-workflow%2f&title=A%20Basic%20Data%20Science%20Workflow
mailto:?subject=Check%20out%20this%20post%20by%20Rebecca%20Barter&body=http%3a%2f%2fwww.rebeccabarter.com%2fblog%2f2017-08-16-data-science-workflow%2f
https://www.bls.gov/tus/
https://www.bls.gov/cps/home.htm

Obtaining the data from the website

Setting up the project directory

data/
 atus_00002.csv.gz
 atus_00002.txt
R/
 clean.R
 load.R

represent. According to their website, the survey is sent to a randomly selected individual from
each household in a set of eligible households chosen so as to represent a range of
demographic characteristics. The set of eligible households consist of those who have
completed their final month of the Current Population Survey (a monthly survey of households
conducted by the Bureau of Census for the Bureau of Labor Statistics).

This survey data has been featured heavily on Nathan Yau’s blog, Flowing Data, which is where
I became aware of it (thanks Nathan!).

The ATUS data can be downloaded from the American Time Use Survey Extract Builder which
is maintained by the Minnesota Population Center at the University of Minnesota.

To actually obtain the data, you need to click on “Build an Extract” in the left-hand “Data” menu
item (or click on “Get Data” inside the “Create an Extract” box). While I was initially confused
about what to do once I got to the page with the drop-down menus asking me to “Select
Variables”, I decided to just go crazy and start clicking. I soon discovered that an “extract” refers
to the subset of the data corresponding to whichever variables I like. Once inside each of these
drop-down menu entries I needed to click on the yellow plus symbols under “cart” to add the
variables to my extract.

After selecting the variables I wanted, I clicked on “Select Samples” and selected only the year
2016. I then went to my cart and clicked on “Create Data Extract” and I was taken to a page
where I had to choose my data format. I changed the data format to .csv and submitted my
extract by clicking on “Submit Extract”. Note that you need to create an account to download
your selected data, but this only takes a second. Once your data has been created (they will
email you when it is ready; this should only take about a minute), you can refresh the page and
download the CSV data file!

It is also a good idea to download the basic codebook by right clicking on the link and selecting
“Save Link As” (which will tell us what each of the variables mean). I saved the file as a .txt file
rather than whatever .cbk (the default) is.

In case you’re interested, the variables I selected are listed at the end of this post.

Now that I have successfully downloaded the data (a file called atus_00002.csv.gz), I am
ready to set up my project directory. This involved a few quick steps.

1. I made a directory called ATUS/ . This is where my project is going to live.

2. Within ATUS/ , I made two empty sub-directories R/ and data/

3. In the R/ sub-directory I make two empty .R files called load.R and clean.R .

4. I then move the downloaded data and codebook files into data/

If you’re following along, my working directory now looks like this:

https://www.bls.gov/tus/
https://www.bls.gov/cps/home.htm
https://flowingdata.com/tag/time-use/
https://www.atusdata.org/atus/
http://www.rebeccabarter.com/blog/2017-08-16-data-science-workflow/#variables

Loading the data: load.R

open zipped file for reading
unz <- gzfile("../data/atus_00002.csv.gz")
load in the data
time_use_orig <- read.csv(unz)

dim(time_use_orig)

[1] 10493 64

head(time_use_orig)

CASEID YEAR NUMCONTACTS_CPS8 HRHHI
1 2.01601e+13 2016 1 3.5094
2 2.01601e+13 2016 1 2.0250
3 2.01601e+13 2016 2 1.2437
4 2.01601e+13 2016 1 2.0413
5 2.01601e+13 2016 1 2.2039
6 2.01601e+13 2016 0 1.0210
HH_SIZE FAMINCOME HH_NUMKIDS HH_NUMADULT
1 3 3 0
2 2 6 0
3 4 4 2
4 4 8 3
5 2 13 0
6 5 5 4
RACE HISPAN ASIAN MARST AGE_CPS8 SEX_CPS
1 100 100 999 1 62
2 110 100 999 1 69
3 110 100 999 6 24
4 100 100 999 4 31
5 100 100 999 1 59
6 120 244 999 6 16

It should be pretty obvious what load.R and clean.R are going to be for: they will be
for loading the data and then cleaning the data (shocking, I know!).

While I will later start conducting my analysis in an eda.Rmd file, I usually don’t want to do
the initial data cleaning in this file as it can be long and annoying to have to scroll past. Instead,
I prefer to have separate scripts containing functions for loading and cleaning the data which I
will later call in my eda.Rmd file.

Time to start work in the load.R file! The first thing I want to do is attempt to load in the
data. Sometimes this is painless and easy, and sometimes this is a nightmare (prompting a
session of frantic googling on how to load obscure data types into R).

The first lines of code I write in load.R is as follows:

when I run it in the console, I am pleasantly surprised to find that it works without any issue.

I then take my first look at the data in the console using the dim() command to identify the
dimension of the data and the head() command to view the first 6 rows.

time_use_orig <- loadData()

Cleaning the data: clean.R

a function to load in the data
loadData <- function(path_to_data = "../data/
 # open zipped file for reading
 unz <- gzfile(path_to_data)
 # load in the data
 read.csv(unz)
}

define the loadData() function
source("load.R")
define the cleanData() function
source("clean.R")

It is pretty clear that everything is coded numerically and the variable names are fairly
meaningless to a human. Fortunately, the codebook explains all. I spend some time browsing it.

The loadData() function

To make things simple in the long-run, I turn the above commands into a reusable function
called loadData() . This function will have only one argument that specifies the path of the
data in the local directory (relative to the load.R file). I usually set the default path to be the
actual path for my setup.

To test my function, I simply run in my console by typing

and look at the output of head(time_use_orig) .

Obviously such a function is a bit redundant in this setting: it is just as easy to
write read.csv(gzfile("../data/atus_00002.csv.gz")) in my eventual eda.Rmd file
as it is to write loadData("../data/atus_00002.csv.gz") . The reason I keep
the load.R file in this case is because this is just my default workflow. I always load in my
data using a function called loadData . In some situations, there are many, many things that
need to be done in order to load the data, meaning that my loadData function can be fairly
complicated. For example, sometimes column names need to be read in separately and then
attached to the data, and sometimes I need to play with the format of the data to get R to play
nice.

Next, I need to make some decisions about whether to keep the data in its raw, ugly form, or to
spend some time making my life easier in the long-run by converting the column names to
human-readable versions and converting the numeric codes for each variable to text descriptive
characters or factors.

I also need to ensure that missing values are coded as NA s and that the class of each
variable is what I would expect. For example, when I looked at the head() of the data
above, I noticed that the CASEID variable is printed as a numeric in scientific notation, which
is not ideal. IDs should probably be factors or characters (I go back and forth a lot on which I
prefer)!

In clean.R I start work on a function called cleanData() . Like loadData() , the
function cleanData() is always a part of my workflow.

When I eventually start the eda.Rmd file, I will load and clean the data like this:

load the raw data
time_use_orig <- loadData("../data/atus_00002
clean the data
time_use <- cleanData(time_use_orig)

library(dplyr)
renameColumns <- function(data) {
 data <- data %>% select(id = CASEID,
 year = YEAR,
 # number of attempt
 num_contacts = NUMC
 state = STATEFIP,
 household_size = HH
 family_income = FAM
 num_children = HH_N
 num_adults = HH_NUM
 age = AGE,
 sex = SEX,
 race = RACE,
 marital_status = MA
 education_level = E
 education_years = E
 employment_status =

The cleanData() function

The cleanData() function will actually call three separate functions, each performing a
single task. These functions are

renameColumns() : an optional part of my workflow that changes the column names of
each of my columns so that I can actually understand what they mean.

convertMissing() : a function which converts missing values to NA

convertClass : a function which sets factor variables to factors, sets character
variables to characters, etc

Making columns human-readable: renameColumns()

I hate reading column names that are all-caps, use ridiculous abbreviations and generally don’t
adhere to my definition of “aesthetically pleasing”. Thus, whenever possible, I tend to convert
my column names to human-readable versions. This is fairly tedious whenever the data has
more than around 10 variables or so, but the process itself of renaming the variables is a very
effective way of ensuring that you have a good idea of which variables are even in the data.

A word of caution: it is extremely important to check that you have correctly renamed the
variables, since it is very easy to assign the wrong name to a variable, resulting in misleading
conclusions.

Obviously this step is not practical if you have more than 100 or so variables (although I once
did it with a dataset that had around 300 variables!). In addition, if I will at some point need to
present the data to people who are very familiar with the original variable names, I won’t do any
renaming either.

In this case, however, I have no particular allegiance to the original variable names and I want
to make it as clear as possible (to myself, at least) what they mean.

To change the variable names, the renameColumns() function will leverage
the dplyr function, select() . Note that I also drop a few variables at this stage that I
decided weren’t interesting.

time_use <- renameColumns(time_use_orig)

print out the maximum of each column

 occupation_category
occupation industry

identify how many times informative missing
informative_missing <- sapply(time_use,
 function(x) sum
print out only the non-zero values
informative_missing[informative_missing != 0]

weekly_earning hours_worked_hour
1
time_spent_leisure time_spent_
1

I then test the function out by writing

in the console, and looking at the output of head(time_use) .

Now, I am fully aware that this function I have just written is not generalizable to alternate
subsets of the data variables. This will be one of only two places where I will need to change
things if I want to re-run the analysis on a different subset of variables (the second place will be
when I explicitly convert numeric variables to their character counterparts). I’m facing a trade-off
between generalizability of my pipeline and having human-readable data. If I were intending to
repeat this analysis on different variables, I would either remove the part of the workflow where
I rename the variables (as well as the part where I convert numeric variables to meaningful
factors later on), or I would set the variable names as an argument in
the renameColumns() function (but sadly, select() doesn’t play very nicely with
variables read in as character strings, so I try to avoid this).

Recoding missing values as NA : convertMissing()

If you took a look at the codebook, you will have noticed that there are many different ways to
say that data is missing. This can be very problematic.

The most common way to code missingness in this data is to code it
as 99 999 , 9999 , etc (depending on whether the entries for the variable are two,
three, four or more digit numbers, respectively). These entries are referred to in the codebook
as NIU (Not in universe) . Other types of missing values are recorded such
as 996 corresponding to Refused , 997 corresponding to Don't
know and 998 corresponding to Blank .

I now need to decide what to convert to NA , keeping in mind that I need to be particularly
careful for the variables with many different types of missingness (such as people who refused
to answer, didn’t know or simply left the entry blank). I decide to take a look to see how
widespread these types of missingness are by running the following code in the console:

Since these types of missingness are extremely rare, I decide to simply lump them in with all of
the other NA values.

Next, I want to identify which variables have missing values coded as a varying number of 9s.
Since the missing values are always supposed to correspond to the maximum, I printed out the
maximum of each variable.

sapply(time_use, max)

id
2.016121e+13
num_contacts
8.000000e+00
household_size
1.300000e+01
num_children
9.000000e+00
age
8.500000e+01
race
4.000000e+02
education_level
4.300000e+01
employment_status
5.000000e+00
occupation_industry
9.999000e+03
hours_usually_worked
9.999000e+03
id h l

Helper function for identifying missing val
equalFun <- function(x, value) {
 x == value
}

Helper function for identifying if the max
maxFun <- function(x, value) {
 max(x, na.rm = T) == value
}

convertMissing <- function(data) {
 # convert missing values to NA
 data <- data %>%
 # mutate all missing values coded as 99 t
 mutate_if(function(x) maxFun(x, 99),
 funs(if_else(equalFun(., 99), N
 # mutate all missing values coded as 999
 mutate_if(function(x) maxFun(x, 999),
 funs(if_else(equalFun(., 999),

I notice here that there are several variables with missing values as their maxima such
as occupation_industry with a maximum of 9999 , and hourly_wage with a
maximum of 999.99 . Since I don’t really want to manually convert these missing values
to NA , I decide to automate it using the mutate_if() function from
the dplyr package. First I write a few helper functions in the clean.R file for calculating
the maximum of a vector and for identifying specific values in a vector.

The first argument of mutate_if() is a function which returns a Boolean value specifying
which columns to select. The second argument is wrapped in funs() and itself is a function
which specifies what to do to each column. if_else(equalFun(., 99), NA_integer_,
.) can be read aloud as “If the value is equal to 99, convert it to a NA of integer type,
otherwise do nothing” (the . serves as a placeholder for the data,
like x in function(x)).

convert the missing values to NAs
time_use <- convertMissing(time_use)
check out the summary
summary(time_use)

 # mutate all missing values coded as 9999
 mutate_if(function(x) maxFun(x, 9999),
 funs(if_else(equalFun(., 9999),
 # mutate all missing values coded as 999.
 mutate_if(function(x) maxFun(x, 999.99),
 funs(if_else(equalFun(., 999.99
 # mutate all missing values coded as 9999
 mutate_if(function(x) maxFun(x, 99999.99)
 funs(if_else(equalFun(., 99999.
 # mutate all missing values coded as 998
 mutate_if(function(x) maxFun(x, 998),

((()

id year num_c
Min. :2.016e+13 Min. :2016 Min.
1st Qu.:2.016e+13 1st Qu.:2016 1st Qu
Median :2.016e+13 Median :2016 Median
Mean :2.016e+13 Mean :2016 Mean
3rd Qu.:2.016e+13 3rd Qu.:2016 3rd Qu
Max. :2.016e+13 Max. :2016 Max.

household_size family_income num_chi
Min. : 1.000 Min. : 1.00 Min. :
1st Qu.: 1.000 1st Qu.: 8.00 1st Qu.:
Median : 2.000 Median :12.00 Median :
Mean : 2.657 Mean :10.85 Mean :
3rd Qu.: 4.000 3rd Qu.:14.00 3rd Qu.:
Max. :13.000 Max. :16.00 Max. :

age sex race
Min. :15.00 Min. :1.000 Min. :1
1st Qu.:35.00 1st Qu.:1.000 1st Qu.:1
Median :49.00 Median :2.000 Median :1
M 49 42 M 1 555 M 1

library(ggplot2)
ggplot(time_use) + geom_histogram(aes(x = hou

It took some playing around with running the body of the function in the console
(with data defined as time_use) to get it to run without errors (I was getting errors to do
with NA values and realized that I needed to add na.rm = T in
the maxFun() function).

Once the body runs in the console, I then check to make sure that the complete function
worked as expected by running it in the console and checking out the summary of the output.

Scrolling through the summary, I notice a few peculiarities. In particular, there are several
variables that have stupidly large values. For example the maximum value
for hours_usually_worked is 9995 (this didn’t appear in the codebook!). I decided to
look at a histogram of this variable to see how typical this value is. I ran the following code in
the console:

`stat_bin()` using `bins = 30`. Pick bette

Warning: Removed 4119 rows containing non-

convertMissing <- function(data) {
 # convert missing values to NA
 data <- data %>%
 # mutate all missing values coded as 99 t
 mutate_if(function(x) maxFun(x, 99),
 funs(if_else(equalFun(., 99), N
 # mutate all missing values coded as 999
 mutate_if(function(x) maxFun(x, 999),
 funs(if_else(equalFun(., 999),
 # mutate all missing values coded as 9999
 mutate_if(function(x) maxFun(x, 9999),
 funs(if_else(equalFun(., 9999),
 # mutate all missing values coded as 999.
 mutate_if(function(x) maxFun(x, 999.99),
 funs(if_else(equalFun(., 999.99
 # mutate all missing values coded as 9999
 mutate_if(function(x) maxFun(x, 99999.99)
 funs(if_else(equalFun(., 99999.
 # mutate all missing values coded as 998
 mutate_if(function(x) maxFun(x, 998),

f (if l (lF (998)

re-run the renameColumns() function
time_use <- renameColumns(time_use_orig)
convert missing values to NA
time_use <- convertMissing(time_use)

From the histogram, it is fairly clear that there is an additional type of missing value (405
samples have a value of 9995) that was not mentioned in the documentation. I then go back
and update my convertMissing() function to include this extra missing value.

Next, I ran the convertMissing() function again the data and re-made the histogram to
make sure that everything was going smoothly.

re-make the histogram
ggplot(time_use) + geom_histogram(aes(x = hou

`stat_bin()` using `bins = 30`. Pick bette

Warning: Removed 4524 rows containing non-

ggplot(time_use) + geom_histogram(aes(x = tim

`stat_bin()` using `bins = 30`. Pick bette

Now that that was sorted out, it occurred to me that I wasn’t sure what kind of scale
the time_spent variables were on (is it hours spent in the last week? In the last month? The
last year? Perhaps it is minutes spent over the last day? It probably should have occurred to
me to ask this earlier, but it didn’t. Whatever… I’m asking it now! After spending some time
perusing the internet for a while, I found this tablewhich summarised the average hours
spend per day on a range of activities. For example, it said that on average, people spend 9.58
hours per day on “personal care activities”. The histogram below shows the distribution of
values for the time_spent_personal_care .

https://www.bls.gov/news.release/atus.t01.htm

data/
 atus_00002.csv.gz
 atus_00002.txt
 education_level.txt
 employment_status.txt
 family_income.txt
 marital_status.txt
 occupation_category.txt
 occupation_industry.txt
 race.txt
 sex.txt
 state.txt

The mean value in the data is 580, which when divided by 60 gives 9.6. From this “evidence” I
conclude that what the data contains is the number of minutes spent per day. Whether this is
averaged over a week, or is based on one particular day, I honestly don’t know. But for my
purposes, I’ll just take each value as the number of minutes spent on the activity on a “typical”
day.

Ensuring each variable has the correct class: convertClass()

The final cleaning task involves converting categorical values to have a categorical variable
class (such as a factor), and other things along these lines involving variable classes.

Recall that the person ID variable, CASEID , is currently coded as a numeric (which is printed
in scientific notation). In general, it is good practice to code IDs as factors (or characters).

There are also many other variables that should be coded as factors: state, sex, race,
marital_status, education_level, family_income, employment_status, occupation_category, and
occupation_industry.

Now begins the part of my cleaning process that often takes the longest: I am going to convert
each of these numeric variables not only to factors, but to meaningfulfactors. I don’t want to
make plots for genders 1 and 2, or for states 42 and 28; I want to make plots for males and
females and for states Pennsylvania and Mississippi.

First, for each variable I need to define a data frame that stores the conversion from number to
meaningful category. Fortunately, this information was found in the codebook, and I can copy
and paste these code conversions into separate .txt files and save them in
the data/ folder: states.txt , occupation_industry.txt , occupation_category.txt ,
etc. I can then read them into R as tab-delimited text files.

In case you’re interested, after copying the subsets of the codebook, my project directory now
looks like this:

R/
 clean.R
 load.R

convertClass <- function(data, path_to_codes
 # convert id to a factor
 data <- data %>% mutate(id = as.factor(id))
 # loop through each of the factor variables
 # factor then add to data frame
 for (variable in c("state", "occupation_ind
 "education_level", "ra
 "employment_status", "
 # identify the path to the code file
 path <- paste0(path_to_codes, variable, "
 # read in the code file
 codes <- read.table(path, sep = "\t")
 # remove the second column (the entries a
 codes <- codes[, -2]
 # convert the column names
 colnames(codes) <- c(variable, paste0(var
 # add the code to the original data frame
 data <- left_join(data, codes, by = varia
 # remove old variable and replace with ne
 data[, variable] <- data[, paste0(variabl

d t d t [!(l (d t) %i % t

run the convertClass() function
time_use <- convertClass(time_use)
compare the original variables with the mea
head(time_use)

id year num_contacts
1 20160101160045 2016 1
2 20160101160066 2016 1
3 20160101160069 2016 2 Distric
4 20160101160083 2016 1
5 20160101160084 2016 1
6 20160101160094 2016 0
family_income num_children num_adul
1 $7,500 to $9,999 0
2 $15,000 to $19,999 0
3 $10,000 to $12,499 2
4 $25,000 to $29,999 3
5 $60,000 to $74,999 0
6 $12,500 to $14,999 4

I now start work on a convertClass() function which will be the third component of
my cleanData() function. The first thing I do in convertClass() is convert
the id variable to a factor. I then loop through each of the other factor variables to read in
the code conversions from the .txt files, join the meaningful factors onto the original data frame
using left_join() and remove the numeric version of the variable. The function that I
wrote is presented below. I spent a while playing around in the console with various versions of
the function below (always running code from the .R file rather than typing directly in the
console itself).

After I was done, I tested out that the convertClass() did what I hoped by running the
following code in the console:

Analysis: eda.Rmd

library(tidyverse)
source("R/load.R")
source("R/clean.R")

laod the data
time_use_orig <- loadData()

race
1 White only Married
2 Black only Married
3 Black only
4 White only
5 White only Married

filename: clean.R

Main function for data cleaning stage
cleanData <- function(data) {
 # rename each of the columns to be human-re
 # ignore some of the useless columns (such
 data <- renameColumns(data)
 # convert missing data to NA
 data <- convertMissing(data)
 # convert integers to meaningful factors
 data <- convertClass(data)
 return(data)
}

rename each of the columns to be human-read
renameColumns <- function(data) {
 data <- data %>% select(id = CASEID,
 year = YEAR,
 # number of attempt
 num_contacts = NUMC

STATEFIP

Everything looks good! I
add renameColumns() , convertMissing() and convertClass() to
the cleanData() function. I’m finally done with the cleaning component of my workflow. I
may have to come back and add additional steps as I make unpleasant discoveries in my
analysis, but for now, I can move on.

Below I print my final clean.R file

Where I go from here depends strongly on what questions I want to ask. If I already know the
category of questions I’m planning to ask, and, for example, I know that they fall into two
groups, then I will probably make two .Rmd files, one for each question.

If, however, I just want to play around with the data for a while, as is the case here, I will make a
.Rmd file called eda.Rmd (or something along those lines).

Sometimes I end up separating my initial exploration file into several separate files when I start
to go down several diverging paths.

Regardless of the analysis I decide to conduct, each of my .Rmd files will start with the
following code:

clean the data
time_use <- cleanData(time_use_orig)

List of variables downloaded from ATUX-X

CASEID (ATUS Case ID)
YEAR (Survey year)
NUMCONTACTS_CPS8 (Number of actual and attempted personal contacts)
HRHHID_CPS8 (Household ID (CPS))
HRHHID2_CPS8 (Household ID part 2 (CPS))
STATEFIP (FIPS State Code)
HH_SIZE (Number of people in household)
FAMINCOME (Family income)
HH_NUMKIDS (Number of children under 18 in household)
HH_NUMADULTS (Number of adults in household)
PERNUM (Person number (general))
LINENO (Person line number)
WT06 (Person weight, 2006 methodology)
AGE (Age)
SEX (Sex)
RACE (Race)
HISPAN (Hispanic origin)
ASIAN (Asian origin)
MARST (Marital status)
AGE_CPS8 (Age (CPS))
SEX_CPS8 (Sex (CPS))
EDUC (Highest level of school completed)
EDUCYRS (Years of education)
SCHLCOLL (Enrollment in school or college)
SCHLCOLL_CPS8 (Enrollment in school or college (CPS))
EMPSTAT (Labor force status)
OCC2 (General occupation category, main job)
OCC (Detailed occupation category, main job)
IND2 (General industry classification, main job)
IND (Detailed industry classification, main job)
FULLPART (Full time/part time employment status)
UHRSWORKT (Hours usually worked per week)
UHRSWORK1 (Hours usually worked per week at main job)
UHRSWORK2 (Hours usually worked per week at other jobs)
EARNWEEK (Weekly earnings)
PAIDHOUR (Hourly or non-hourly pay)
EARNRPT (Easiest way to report earnings)
HOURWAGE (Hourly earnings)
HRSATRATE (Hours worked at hourly rate)
OTUSUAL (Usually receives overtime, tips, commission at main job)
OTPAY (Weekly overtime earnings)
UHRSWORKT_CPS8 (Hours usually worked per week (CPS))
UHRSWORK1_CPS8 (Hours usually worked per week at main job (CPS))
UHRSWORK2_CPS8 (Hours usually worked per week at other jobs (CPS))
HRSWORKT_CPS8 (Hours worked last week (CPS))
ACT_CAREHH (ACT: Caring for and helping household members)
ACT_CARENHH (ACT: Caring for and helping non-household members)
ACT_EDUC (ACT: Educational activities)
ACT_FOOD (ACT: Eat and drinking)
ACT_GOVSERV (ACT: Government services and civic obligations)
ACT_HHACT (ACT: Household activities)
ACT_HHSERV (ACT: Household services)
ACT_PCARE (ACT: Personal care)
ACT_PHONE (ACT: Telephone calls)

The opportunities for analysis are wide open!

ACT_PROFSERV (ACT: Professional and personal care services)
ACT_PURCH (ACT: Consumer purchases)
ACT_RELIG (ACT: Religious and spiritual activities)
ACT_SOCIAL (ACT: Socializing, relaxing, and leisure)
ACT_SPORTS (ACT: Sports, exercise, and recreation)
ACT_TRAVEL (ACT: Traveling)
ACT_VOL (ACT: Volunteer activities)
ACT_WORK (ACT: Working and Work-related Activities)
ERS_ASSOC (ERS: Activities associated with primary eating and drinking (travel and
waiting))
ERS_PRIM (ERS: Primary eating and drinking)

C a t e g o r i e s R Wo r k f l o w

http://www.rebeccabarter.com/categoriesr
http://www.rebeccabarter.com/categoriesworkflow

