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Developing a seamless, clean workflow for data analysis is harder than it sounds, especially
because this is something that is almost never explicitly taught. Apparently we are all just
supposed to “figure it out for ourselves”. For most of us, when we start our first few analysis
projects, we basically have no idea how we are going to structure all of our files, or even what
files we will need to make. As we try more and more things in our analysis (perhaps generating
a large number of unnecessary files called  analysis2.R ,  next-
analysis.R ,  analysis-
writeup.Rmd ,  data_clean.csv ,  regression_results.csv and  data_all.csv  along
the way), we find that our project folder gets jumbled and confusing. The frustration when we
come back to the project 6 months later and can’t remember which file contained the code that
lead to the final conclusions is all too real.

This is why I have decided to describe in (possibly too much) detail the data cleaning workflow
that I have somehow ended up with. I find this workflow to be particularly useful when dealing
with messy (and possibly large) datasets that need several cleaning steps. Note that I did not
develop this workflow in conjunction with any resources, I simply figured out what worked best
for me via trial-and-error (a process which took 5 years and is definitely still ongoing). There will
be several other resources out there on the internet describing “optimal workflows”, and these
are definitely worth a read too (although a quick google found surprisingly few with the level of
detail needed for a beginner). The key is figuring out a workflow that works best for you. That
may be similar to mine, or it may not be.

If you decide to keep reading (perhaps because you too suffer from messy-project-syndrome
and want some relief), by the end of this post you will know far too much about me and how I
spend my time. As you will discover, I am particularly thorough when I clean data, and can
spend hours simply making sure that I know what is in the data and moulding it so that it exactly
adheres precisely to the format that I consider “clean”.

In this post I will describe my thought process as I download, clean and prepare for analysis the
data from the 2016 American Time Use Survey (ATUS). I have written my process in sufficient
detail such that you can follow along if you’d like to.

The American Time Use Survey is a yearly survey administered by the U.S. Census Bureau
and sponsored by the Bureau of Labor Statistics. As with all surveys, it is probably good
practice to first get an idea of what kind of population its respondents are supposed to
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Obtaining the data from the website

Setting up the project directory

data/ 
  atus_00002.csv.gz 
  atus_00002.txt 
R/ 
  clean.R 
  load.R

represent. According to their website, the survey is sent to a randomly selected individual from
each household in a set of eligible households chosen so as to represent a range of
demographic characteristics. The set of eligible households consist of those who have
completed their final month of the Current Population Survey (a monthly survey of households
conducted by the Bureau of Census for the Bureau of Labor Statistics).

This survey data has been featured heavily on Nathan Yau’s blog, Flowing Data, which is where
I became aware of it (thanks Nathan!).

The ATUS data can be downloaded from the American Time Use Survey Extract Builder which
is maintained by the Minnesota Population Center at the University of Minnesota.

To actually obtain the data, you need to click on “Build an Extract” in the left-hand “Data” menu
item (or click on “Get Data” inside the “Create an Extract” box). While I was initially confused
about what to do once I got to the page with the drop-down menus asking me to “Select
Variables”, I decided to just go crazy and start clicking. I soon discovered that an “extract” refers
to the subset of the data corresponding to whichever variables I like. Once inside each of these
drop-down menu entries I needed to click on the yellow plus symbols under “cart” to add the
variables to my extract.

After selecting the variables I wanted, I clicked on “Select Samples” and selected only the year
2016. I then went to my cart and clicked on “Create Data Extract” and I was taken to a page
where I had to choose my data format. I changed the data format to .csv and submitted my
extract by clicking on “Submit Extract”. Note that you need to create an account to download
your selected data, but this only takes a second. Once your data has been created (they will
email you when it is ready; this should only take about a minute), you can refresh the page and
download the CSV data file!

It is also a good idea to download the basic codebook by right clicking on the link and selecting
“Save Link As” (which will tell us what each of the variables mean). I saved the file as a .txt file
rather than whatever .cbk (the default) is.

In case you’re interested, the variables I selected are listed at the end of this post.

Now that I have successfully downloaded the data (a file called  atus_00002.csv.gz ), I am
ready to set up my project directory. This involved a few quick steps.

1. I made a directory called  ATUS/ . This is where my project is going to live.

2. Within  ATUS/ , I made two empty sub-directories  R/  and  data/

3. In the  R/  sub-directory I make two empty .R files called  load.R  and  clean.R .

4. I then move the downloaded data and codebook files into  data/

If you’re following along, my working directory now looks like this:
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Loading the data:  load.R

# open zipped file for reading 
unz <- gzfile("../data/atus_00002.csv.gz") 
# load in the data 
time_use_orig <- read.csv(unz)

dim(time_use_orig)

## [1] 10493    64

head(time_use_orig)

##        CASEID YEAR NUMCONTACTS_CPS8  HRHHI
## 1 2.01601e+13 2016                1 3.5094
## 2 2.01601e+13 2016                1 2.0250
## 3 2.01601e+13 2016                2 1.2437
## 4 2.01601e+13 2016                1 2.0413
## 5 2.01601e+13 2016                1 2.2039
## 6 2.01601e+13 2016                0 1.0210
##   HH_SIZE FAMINCOME HH_NUMKIDS HH_NUMADULT
## 1       3         3          0            
## 2       2         6          0            
## 3       4         4          2            
## 4       4         8          3            
## 5       2        13          0            
## 6       5         5          4            
##   RACE HISPAN ASIAN MARST AGE_CPS8 SEX_CPS
## 1  100    100   999     1       62        
## 2  110    100   999     1       69        
## 3  110    100   999     6       24        
## 4  100    100   999     4       31        
## 5  100    100   999     1       59        
## 6 120 244 999 6 16

It should be pretty obvious what  load.R  and  clean.R  are going to be for: they will be
for loading the data and then cleaning the data (shocking, I know!).

While I will later start conducting my analysis in an  eda.Rmd  file, I usually don’t want to do
the initial data cleaning in this file as it can be long and annoying to have to scroll past. Instead,
I prefer to have separate scripts containing functions for loading and cleaning the data which I
will later call in my  eda.Rmd  file.

Time to start work in the  load.R  file! The first thing I want to do is attempt to load in the
data. Sometimes this is painless and easy, and sometimes this is a nightmare (prompting a
session of frantic googling on how to load obscure data types into R).

The first lines of code I write in  load.R  is as follows:

when I run it in the console, I am pleasantly surprised to find that it works without any issue.

I then take my first look at the data in the console using the  dim()  command to identify the
dimension of the data and the  head()  command to view the first 6 rows.



time_use_orig <- loadData()

Cleaning the data:  clean.R

# a function to load in the data 
loadData <- function(path_to_data = "../data/
  # open zipped file for reading 
  unz <- gzfile(path_to_data) 
  # load in the data 
  read.csv(unz) 
}

# define the loadData() function
source("load.R") 
# define the cleanData() function
source("clean.R") 
 

It is pretty clear that everything is coded numerically and the variable names are fairly
meaningless to a human. Fortunately, the codebook explains all. I spend some time browsing it.

The  loadData()  function

To make things simple in the long-run, I turn the above commands into a reusable function
called  loadData() . This function will have only one argument that specifies the path of the
data in the local directory (relative to the  load.R  file). I usually set the default path to be the
actual path for my setup.

To test my function, I simply run in my console by typing

and look at the output of  head(time_use_orig) .

Obviously such a function is a bit redundant in this setting: it is just as easy to
write  read.csv(gzfile("../data/atus_00002.csv.gz")) in my eventual  eda.Rmd  file
as it is to write  loadData("../data/atus_00002.csv.gz") . The reason I keep
the  load.R  file in this case is because this is just my default workflow. I always load in my
data using a function called  loadData . In some situations, there are many, many things that
need to be done in order to load the data, meaning that my  loadData  function can be fairly
complicated. For example, sometimes column names need to be read in separately and then
attached to the data, and sometimes I need to play with the format of the data to get R to play
nice.

Next, I need to make some decisions about whether to keep the data in its raw, ugly form, or to
spend some time making my life easier in the long-run by converting the column names to
human-readable versions and converting the numeric codes for each variable to text descriptive
characters or factors.

I also need to ensure that missing values are coded as  NA s and that the class of each
variable is what I would expect. For example, when I looked at the  head()  of the data
above, I noticed that the  CASEID  variable is printed as a numeric in scientific notation, which
is not ideal. IDs should probably be factors or characters (I go back and forth a lot on which I
prefer)!

In  clean.R  I start work on a function called  cleanData() . Like  loadData() , the
function  cleanData()  is always a part of my workflow.

When I eventually start the  eda.Rmd  file, I will load and clean the data like this:



# load the raw data 
time_use_orig <- loadData("../data/atus_00002
# clean the data 
time_use <- cleanData(time_use_orig)

library(dplyr) 
renameColumns <- function(data) { 
  data <- data %>% select(id = CASEID, 
                          year = YEAR, 
                          # number of attempt
                          num_contacts = NUMC
                          state = STATEFIP, 
                          household_size = HH
                          family_income = FAM
                          num_children = HH_N
                          num_adults = HH_NUM
                          age = AGE, 
                          sex = SEX, 
                          race = RACE, 
                          marital_status = MA
                          education_level = E
                          education_years = E
                          employment_status =

The  cleanData()  function

The  cleanData()  function will actually call three separate functions, each performing a
single task. These functions are

renameColumns() : an optional part of my workflow that changes the column names of
each of my columns so that I can actually understand what they mean.

convertMissing() : a function which converts missing values to  NA

convertClass : a function which sets factor variables to factors, sets character
variables to characters, etc

Making columns human-readable:  renameColumns()

I hate reading column names that are all-caps, use ridiculous abbreviations and generally don’t
adhere to my definition of “aesthetically pleasing”. Thus, whenever possible, I tend to convert
my column names to human-readable versions. This is fairly tedious whenever the data has
more than around 10 variables or so, but the process itself of renaming the variables is a very
effective way of ensuring that you have a good idea of which variables are even in the data.

A word of caution: it is extremely important to check that you have correctly renamed the
variables, since it is very easy to assign the wrong name to a variable, resulting in misleading
conclusions.

Obviously this step is not practical if you have more than 100 or so variables (although I once
did it with a dataset that had around 300 variables!). In addition, if I will at some point need to
present the data to people who are very familiar with the original variable names, I won’t do any
renaming either.

In this case, however, I have no particular allegiance to the original variable names and I want
to make it as clear as possible (to myself, at least) what they mean.

To change the variable names, the  renameColumns()  function will leverage
the  dplyr  function,  select() . Note that I also drop a few variables at this stage that I
decided weren’t interesting.



time_use <- renameColumns(time_use_orig)

# print out the maximum of each column 

                          occupation_category
occupation industry

# identify how many times informative missing
informative_missing <- sapply(time_use,  
                              function(x) sum
# print out only the non-zero values 
informative_missing[informative_missing != 0]

##           weekly_earning hours_worked_hour
##                        1                  
##       time_spent_leisure       time_spent_
##                        1                  

I then test the function out by writing

in the console, and looking at the output of  head(time_use) .

Now, I am fully aware that this function I have just written is not generalizable to alternate
subsets of the data variables. This will be one of only two places where I will need to change
things if I want to re-run the analysis on a different subset of variables (the second place will be
when I explicitly convert numeric variables to their character counterparts). I’m facing a trade-off
between generalizability of my pipeline and having human-readable data. If I were intending to
repeat this analysis on different variables, I would either remove the part of the workflow where
I rename the variables (as well as the part where I convert numeric variables to meaningful
factors later on), or I would set the variable names as an argument in
the  renameColumns() function (but sadly,  select()  doesn’t play very nicely with
variables read in as character strings, so I try to avoid this).

Recoding missing values as  NA :  convertMissing()

If you took a look at the codebook, you will have noticed that there are many different ways to
say that data is missing. This can be very problematic.

The most common way to code missingness in this data is to code it
as  99   999 ,  9999 , etc (depending on whether the entries for the variable are two,
three, four or more digit numbers, respectively). These entries are referred to in the codebook
as  NIU (Not in universe) . Other types of missing values are recorded such
as  996  corresponding to  Refused ,  997  corresponding to  Don't
know  and  998  corresponding to  Blank .

I now need to decide what to convert to  NA , keeping in mind that I need to be particularly
careful for the variables with many different types of missingness (such as people who refused
to answer, didn’t know or simply left the entry blank). I decide to take a look to see how
widespread these types of missingness are by running the following code in the console:

Since these types of missingness are extremely rare, I decide to simply lump them in with all of
the other  NA  values.

Next, I want to identify which variables have missing values coded as a varying number of 9s.
Since the missing values are always supposed to correspond to the maximum, I printed out the
maximum of each variable.



sapply(time_use, max)

##                                id         
##                      2.016121e+13         
##                      num_contacts         
##                      8.000000e+00         
##                    household_size         
##                      1.300000e+01         
##                      num_children         
##                      9.000000e+00         
##                               age         
##                      8.500000e+01         
##                              race         
##                      4.000000e+02         
##                   education_level         
##                      4.300000e+01         
##                 employment_status         
##                      5.000000e+00         
##               occupation_industry         
##                      9.999000e+03         
##              hours_usually_worked         
##                      9.999000e+03         
## id h l

# Helper function for identifying missing val
equalFun <- function(x, value) { 
  x == value 
} 
 
# Helper function for identifying if the max 
maxFun <- function(x, value) { 
  max(x, na.rm = T) == value 
}

convertMissing <- function(data) { 
  # convert missing values to NA 
  data <- data %>% 
    # mutate all missing values coded as 99 t
    mutate_if(function(x) maxFun(x, 99),  
              funs(if_else(equalFun(., 99), N
    # mutate all missing values coded as 999 
    mutate_if(function(x) maxFun(x, 999),  
              funs(if_else(equalFun(., 999), 

I notice here that there are several variables with missing values as their maxima such
as  occupation_industry  with a maximum of  9999 , and  hourly_wage  with a
maximum of  999.99 . Since I don’t really want to manually convert these missing values
to  NA , I decide to automate it using the  mutate_if()  function from
the  dplyr  package. First I write a few helper functions in the  clean.R  file for calculating
the maximum of a vector and for identifying specific values in a vector.

The first argument of  mutate_if()  is a function which returns a Boolean value specifying
which columns to select. The second argument is wrapped in  funs()  and itself is a function
which specifies what to do to each column.  if_else(equalFun(., 99), NA_integer_,
.)  can be read aloud as “If the value is equal to 99, convert it to a  NA  of integer type,
otherwise do nothing” (the  .  serves as a placeholder for the data,
like  x  in  function(x) ).



# convert the missing values to NAs 
time_use <- convertMissing(time_use) 
# check out the summary 
summary(time_use)

    # mutate all missing values coded as 9999
    mutate_if(function(x) maxFun(x, 9999),  
              funs(if_else(equalFun(., 9999),
    # mutate all missing values coded as 999.
    mutate_if(function(x) maxFun(x, 999.99), 
              funs(if_else(equalFun(., 999.99
    # mutate all missing values coded as 9999
    mutate_if(function(x) maxFun(x, 99999.99)
              funs(if_else(equalFun(., 99999.
    # mutate all missing values coded as 998 
    mutate_if(function(x) maxFun(x, 998),  

( ( ( )

##        id                 year       num_c
##  Min.   :2.016e+13   Min.   :2016   Min.  
##  1st Qu.:2.016e+13   1st Qu.:2016   1st Qu
##  Median :2.016e+13   Median :2016   Median
##  Mean   :2.016e+13   Mean   :2016   Mean  
##  3rd Qu.:2.016e+13   3rd Qu.:2016   3rd Qu
##  Max.   :2.016e+13   Max.   :2016   Max.  
##                                           
##  household_size   family_income    num_chi
##  Min.   : 1.000   Min.   : 1.00   Min.   :
##  1st Qu.: 1.000   1st Qu.: 8.00   1st Qu.:
##  Median : 2.000   Median :12.00   Median :
##  Mean   : 2.657   Mean   :10.85   Mean   :
##  3rd Qu.: 4.000   3rd Qu.:14.00   3rd Qu.:
##  Max.   :13.000   Max.   :16.00   Max.   :
##                                           
##       age             sex             race
##  Min.   :15.00   Min.   :1.000   Min.   :1
##  1st Qu.:35.00   1st Qu.:1.000   1st Qu.:1
##  Median :49.00   Median :2.000   Median :1
## M 49 42 M 1 555 M 1

library(ggplot2) 
ggplot(time_use) + geom_histogram(aes(x = hou

It took some playing around with running the body of the function in the console
(with  data  defined as  time_use ) to get it to run without errors (I was getting errors to do
with  NA  values and realized that I needed to add  na.rm = T  in
the  maxFun() function).

Once the body runs in the console, I then check to make sure that the complete function
worked as expected by running it in the console and checking out the summary of the output.

Scrolling through the summary, I notice a few peculiarities. In particular, there are several
variables that have stupidly large values. For example the maximum value
for  hours_usually_worked  is  9995  (this didn’t appear in the codebook!). I decided to
look at a histogram of this variable to see how typical this value is. I ran the following code in
the console:



## `stat_bin()` using `bins = 30`. Pick bette

## Warning: Removed 4119 rows containing non-

convertMissing <- function(data) { 
  # convert missing values to NA 
  data <- data %>% 
    # mutate all missing values coded as 99 t
    mutate_if(function(x) maxFun(x, 99),  
              funs(if_else(equalFun(., 99), N
    # mutate all missing values coded as 999 
    mutate_if(function(x) maxFun(x, 999),  
              funs(if_else(equalFun(., 999), 
    # mutate all missing values coded as 9999
    mutate_if(function(x) maxFun(x, 9999),  
              funs(if_else(equalFun(., 9999),
    # mutate all missing values coded as 999.
    mutate_if(function(x) maxFun(x, 999.99), 
              funs(if_else(equalFun(., 999.99
    # mutate all missing values coded as 9999
    mutate_if(function(x) maxFun(x, 99999.99)
              funs(if_else(equalFun(., 99999.
    # mutate all missing values coded as 998 
    mutate_if(function(x) maxFun(x, 998),  

f (if l ( lF ( 998)

# re-run the renameColumns() function 
time_use <- renameColumns(time_use_orig) 
# convert missing values to NA 
time_use <- convertMissing(time_use) 

From the histogram, it is fairly clear that there is an additional type of missing value (405
samples have a value of  9995 ) that was not mentioned in the documentation. I then go back
and update my  convertMissing()  function to include this extra missing value.

Next, I ran the  convertMissing()  function again the data and re-made the histogram to
make sure that everything was going smoothly.



# re-make the histogram 
ggplot(time_use) + geom_histogram(aes(x = hou

## `stat_bin()` using `bins = 30`. Pick bette

## Warning: Removed 4524 rows containing non-

ggplot(time_use) + geom_histogram(aes(x = tim

## `stat_bin()` using `bins = 30`. Pick bette

Now that that was sorted out, it occurred to me that I wasn’t sure what kind of scale
the  time_spent variables were on (is it hours spent in the last week? In the last month? The
last year? Perhaps it is minutes spent over the last day? It probably should have occurred to
me to ask this earlier, but it didn’t. Whatever… I’m asking it now! After spending some time
perusing the internet for a while, I found this tablewhich summarised the average hours
spend per day on a range of activities. For example, it said that on average, people spend 9.58
hours per day on “personal care activities”. The histogram below shows the distribution of
values for the  time_spent_personal_care .

https://www.bls.gov/news.release/atus.t01.htm


data/ 
  atus_00002.csv.gz 
  atus_00002.txt 
  education_level.txt 
  employment_status.txt 
  family_income.txt 
  marital_status.txt 
  occupation_category.txt 
  occupation_industry.txt 
  race.txt 
  sex.txt 
  state.txt 

The mean value in the data is 580, which when divided by 60 gives 9.6. From this “evidence” I
conclude that what the data contains is the number of minutes spent per day. Whether this is
averaged over a week, or is based on one particular day, I honestly don’t know. But for my
purposes, I’ll just take each value as the number of minutes spent on the activity on a “typical”
day.

Ensuring each variable has the correct class:  convertClass()

The final cleaning task involves converting categorical values to have a categorical variable
class (such as a factor), and other things along these lines involving variable classes.

Recall that the person ID variable,  CASEID , is currently coded as a numeric (which is printed
in scientific notation). In general, it is good practice to code IDs as factors (or characters).

There are also many other variables that should be coded as factors: state, sex, race,
marital_status, education_level, family_income, employment_status, occupation_category, and
occupation_industry.

Now begins the part of my cleaning process that often takes the longest: I am going to convert
each of these numeric variables not only to factors, but to meaningfulfactors. I don’t want to
make plots for genders 1 and 2, or for states 42 and 28; I want to make plots for males and
females and for states Pennsylvania and Mississippi.

First, for each variable I need to define a data frame that stores the conversion from number to
meaningful category. Fortunately, this information was found in the codebook, and I can copy
and paste these code conversions into separate .txt files and save them in
the  data/  folder:  states.txt ,  occupation_industry.txt ,  occupation_category.txt ,
etc. I can then read them into R as tab-delimited text files.

In case you’re interested, after copying the subsets of the codebook, my project directory now
looks like this:



R/ 
  clean.R 
  load.R

convertClass <- function(data, path_to_codes 
  # convert id to a factor 
  data <- data %>% mutate(id = as.factor(id))
  # loop through each of the factor variables
  # factor then add to data frame 
  for (variable in c("state", "occupation_ind
                       "education_level", "ra
                       "employment_status", "
    # identify the path to the code file 
    path <- paste0(path_to_codes, variable, "
    # read in the code file 
    codes <- read.table(path, sep = "\t") 
    # remove the second column (the entries a
    codes <- codes[, -2] 
    # convert the column names 
    colnames(codes) <- c(variable, paste0(var
    # add the code to the original data frame
    data <- left_join(data, codes, by = varia
    # remove old variable and replace with ne
    data[, variable] <- data[, paste0(variabl

d t d t [ !( l (d t ) %i % t

# run the convertClass() function 
time_use <- convertClass(time_use) 
# compare the original variables with the mea
head(time_use)

##               id year num_contacts        
## 1 20160101160045 2016            1        
## 2 20160101160066 2016            1        
## 3 20160101160069 2016            2 Distric
## 4 20160101160083 2016            1        
## 5 20160101160084 2016            1        
## 6 20160101160094 2016            0        
##        family_income num_children num_adul
## 1   $7,500 to $9,999            0         
## 2 $15,000 to $19,999            0         
## 3 $10,000 to $12,499            2         
## 4 $25,000 to $29,999            3         
## 5 $60,000 to $74,999            0         
## 6 $12,500 to $14,999            4         

I now start work on a  convertClass()  function which will be the third component of
my  cleanData()  function. The first thing I do in  convertClass()  is convert
the  id  variable to a factor. I then loop through each of the other factor variables to read in
the code conversions from the .txt files, join the meaningful factors onto the original data frame
using  left_join()  and remove the numeric version of the variable. The function that I
wrote is presented below. I spent a while playing around in the console with various versions of
the function below (always running code from the .R file rather than typing directly in the
console itself).

After I was done, I tested out that the  convertClass()  did what I hoped by running the
following code in the console:



Analysis:  eda.Rmd

library(tidyverse) 
source("R/load.R") 
source("R/clean.R") 
 
# laod the data 
time_use_orig <- loadData() 

##                              race         
## 1                      White only Married 
## 2                      Black only Married 
## 3                      Black only         
## 4                      White only         
## 5                      White only Married 

# filename: clean.R 
 
# Main function for data cleaning stage 
cleanData <- function(data) { 
  # rename each of the columns to be human-re
  # ignore some of the useless columns (such 
  data <- renameColumns(data) 
  # convert missing data to NA 
  data <- convertMissing(data) 
  # convert integers to meaningful factors 
  data <- convertClass(data) 
  return(data) 
} 
 
# rename each of the columns to be human-read
renameColumns <- function(data) { 
  data <- data %>% select(id = CASEID, 
                          year = YEAR, 
                          # number of attempt
                          num_contacts = NUMC

STATEFIP

Everything looks good! I
add  renameColumns() ,  convertMissing()  and  convertClass()  to
the  cleanData()  function. I’m finally done with the cleaning component of my workflow. I
may have to come back and add additional steps as I make unpleasant discoveries in my
analysis, but for now, I can move on.

Below I print my final  clean.R  file

Where I go from here depends strongly on what questions I want to ask. If I already know the
category of questions I’m planning to ask, and, for example, I know that they fall into two
groups, then I will probably make two .Rmd files, one for each question.

If, however, I just want to play around with the data for a while, as is the case here, I will make a
.Rmd file called  eda.Rmd  (or something along those lines).

Sometimes I end up separating my initial exploration file into several separate files when I start
to go down several diverging paths.

Regardless of the analysis I decide to conduct, each of my  .Rmd  files will start with the
following code:



# clean the data 
time_use <- cleanData(time_use_orig)

List of variables downloaded from ATUX-X

CASEID (ATUS Case ID)
YEAR (Survey year)
NUMCONTACTS_CPS8 (Number of actual and attempted personal contacts)
HRHHID_CPS8 (Household ID (CPS))
HRHHID2_CPS8 (Household ID part 2 (CPS))
STATEFIP (FIPS State Code)
HH_SIZE (Number of people in household)
FAMINCOME (Family income)
HH_NUMKIDS (Number of children under 18 in household)
HH_NUMADULTS (Number of adults in household)
PERNUM (Person number (general))
LINENO (Person line number)
WT06 (Person weight, 2006 methodology)
AGE (Age)
SEX (Sex)
RACE (Race)
HISPAN (Hispanic origin)
ASIAN (Asian origin)
MARST (Marital status)
AGE_CPS8 (Age (CPS))
SEX_CPS8 (Sex (CPS))
EDUC (Highest level of school completed)
EDUCYRS (Years of education)
SCHLCOLL (Enrollment in school or college)
SCHLCOLL_CPS8 (Enrollment in school or college (CPS))
EMPSTAT (Labor force status)
OCC2 (General occupation category, main job)
OCC (Detailed occupation category, main job)
IND2 (General industry classification, main job)
IND (Detailed industry classification, main job)
FULLPART (Full time/part time employment status)
UHRSWORKT (Hours usually worked per week)
UHRSWORK1 (Hours usually worked per week at main job)
UHRSWORK2 (Hours usually worked per week at other jobs)
EARNWEEK (Weekly earnings)
PAIDHOUR (Hourly or non-hourly pay)
EARNRPT (Easiest way to report earnings)
HOURWAGE (Hourly earnings)
HRSATRATE (Hours worked at hourly rate)
OTUSUAL (Usually receives overtime, tips, commission at main job)
OTPAY (Weekly overtime earnings)
UHRSWORKT_CPS8 (Hours usually worked per week (CPS))
UHRSWORK1_CPS8 (Hours usually worked per week at main job (CPS))
UHRSWORK2_CPS8 (Hours usually worked per week at other jobs (CPS))
HRSWORKT_CPS8 (Hours worked last week (CPS))
ACT_CAREHH (ACT: Caring for and helping household members)
ACT_CARENHH (ACT: Caring for and helping non-household members)
ACT_EDUC (ACT: Educational activities)
ACT_FOOD (ACT: Eat and drinking)
ACT_GOVSERV (ACT: Government services and civic obligations)
ACT_HHACT (ACT: Household activities)
ACT_HHSERV (ACT: Household services)
ACT_PCARE (ACT: Personal care)
ACT_PHONE (ACT: Telephone calls)

The opportunities for analysis are wide open!



ACT_PROFSERV (ACT: Professional and personal care services)
ACT_PURCH (ACT: Consumer purchases)
ACT_RELIG (ACT: Religious and spiritual activities)
ACT_SOCIAL (ACT: Socializing, relaxing, and leisure)
ACT_SPORTS (ACT: Sports, exercise, and recreation)
ACT_TRAVEL (ACT: Traveling)
ACT_VOL (ACT: Volunteer activities)
ACT_WORK (ACT: Working and Work-related Activities)
ERS_ASSOC (ERS: Activities associated with primary eating and drinking (travel and
waiting))
ERS_PRIM (ERS: Primary eating and drinking)

C a t e g o r i e s   R   Wo r k f l o w

http://www.rebeccabarter.com/categoriesr
http://www.rebeccabarter.com/categoriesworkflow

